當前位置: 首頁>>代碼示例>>Python>>正文


Python Model.fit_generator方法代碼示例

本文整理匯總了Python中torchbearer.Model.fit_generator方法的典型用法代碼示例。如果您正苦於以下問題:Python Model.fit_generator方法的具體用法?Python Model.fit_generator怎麽用?Python Model.fit_generator使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torchbearer.Model的用法示例。


在下文中一共展示了Model.fit_generator方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_main_loop_metrics

# 需要導入模塊: from torchbearer import Model [as 別名]
# 或者: from torchbearer.Model import fit_generator [as 別名]
    def test_main_loop_metrics(self):
        metric = Metric('test')
        metric.process = Mock(return_value={'test': 0})
        metric.process_final = Mock(return_value={'test': 0})
        metric.reset = Mock(return_value=None)

        data = [(torch.Tensor([1]), torch.Tensor([1])), (torch.Tensor([2]), torch.Tensor([2])), (torch.Tensor([3]), torch.Tensor([3]))]
        generator = DataLoader(data)
        train_steps = len(data)

        epochs = 1

        callback = MagicMock()

        torchmodel = MagicMock()
        torchmodel.forward = Mock(return_value=1)
        optimizer = MagicMock()

        loss = torch.tensor([2], requires_grad=True)
        criterion = Mock(return_value=loss)

        torchbearermodel = Model(torchmodel, optimizer, criterion, [metric])
        torchbearerstate = torchbearermodel.fit_generator(generator, train_steps, epochs, 0, [callback], initial_epoch=0, pass_state=False)

        torchbearerstate[torchbearer.METRIC_LIST].metric_list[0].reset.assert_called_once()
        self.assertTrue(torchbearerstate[torchbearer.METRIC_LIST].metric_list[0].process.call_count == len(data))
        torchbearerstate[torchbearer.METRIC_LIST].metric_list[0].process_final.assert_called_once()
        self.assertTrue(torchbearerstate[torchbearer.METRICS]['test'] == 0)
開發者ID:little1tow,項目名稱:torchbearer,代碼行數:30,代碼來源:test_torchbearer.py

示例2: test_main_loop_verbose

# 需要導入模塊: from torchbearer import Model [as 別名]
# 或者: from torchbearer.Model import fit_generator [as 別名]
    def test_main_loop_verbose(self):
        metric = Metric('test')

        data = [(torch.Tensor([1]), torch.Tensor([1])), (torch.Tensor([2]), torch.Tensor([2])), (torch.Tensor([3]), torch.Tensor([3]))]
        generator = DataLoader(data)
        train_steps = len(data)

        epochs = 1

        callback = MagicMock()

        torchmodel = MagicMock()
        torchmodel.forward = Mock(return_value=1)
        optimizer = MagicMock()

        loss = torch.tensor([2], requires_grad=True)
        criterion = Mock(return_value=loss)

        import sys
        from io import StringIO
        saved_std_err = sys.stderr
        out = StringIO()
        sys.stderr = out

        torchbearermodel = Model(torchmodel, optimizer, criterion, [metric])
        torchbearerstate = torchbearermodel.fit_generator(generator, train_steps, epochs, 1, [callback], initial_epoch=0, pass_state=False)

        output = out.getvalue().strip()
        self.assertTrue(output != '')
        sys.stderr = saved_std_err
開發者ID:little1tow,項目名稱:torchbearer,代碼行數:32,代碼來源:test_torchbearer.py

示例3: test_main_loop_stop_training

# 需要導入模塊: from torchbearer import Model [as 別名]
# 或者: from torchbearer.Model import fit_generator [as 別名]
    def test_main_loop_stop_training(self):
        class stop_training_test_callback(Callback):
            def on_sample(self, state):
                super().on_sample(state)
                state[torchbearer.STOP_TRAINING] = True

        metric = Metric('test')

        data = [(torch.Tensor([1]), torch.Tensor([1])), (torch.Tensor([2]), torch.Tensor([2])), (torch.Tensor([3]), torch.Tensor([3]))]
        generator = DataLoader(data)
        train_steps = None

        epochs = 1

        callback = stop_training_test_callback()

        torchmodel = MagicMock()
        torchmodel.forward = Mock(return_value=1)
        optimizer = MagicMock()

        loss = Mock()
        criterion = Mock(return_value=loss)

        torchbearermodel = Model(torchmodel, optimizer, criterion, [metric])
        torchbearerstate = torchbearermodel.fit_generator(generator, train_steps, epochs, 0, [callback], initial_epoch=0, pass_state=True)
        self.assertTrue(torchbearerstate[torchbearer.MODEL].call_count == 1)
開發者ID:little1tow,項目名稱:torchbearer,代碼行數:28,代碼來源:test_torchbearer.py

示例4: test_main_loop_callback_calls

# 需要導入模塊: from torchbearer import Model [as 別名]
# 或者: from torchbearer.Model import fit_generator [as 別名]
    def test_main_loop_callback_calls(self):
        metric = Metric('test')

        data = [(torch.Tensor([1]), torch.Tensor([1])), (torch.Tensor([2]), torch.Tensor([2])), (torch.Tensor([3]), torch.Tensor([3]))]
        generator = DataLoader(data)
        train_steps = 2

        epochs = 1

        callback = MagicMock()

        torchmodel = MagicMock()
        torchmodel.forward = Mock(return_value=1)
        optimizer = MagicMock()

        loss = Mock()
        criterion = Mock(return_value=loss)

        torchbearermodel = Model(torchmodel, optimizer, criterion, [metric])
        torchbearerstate = torchbearermodel.fit_generator(generator, train_steps, epochs, 0, [callback], initial_epoch=0, pass_state=True)
        callback.on_start.assert_called_once()
        callback.on_start_epoch.asser_called_once()
        callback.on_start_training.assert_called_once()
        self.assertTrue(callback.on_sample.call_count == train_steps*epochs)
        self.assertTrue(callback.on_forward.call_count == train_steps*epochs)
        self.assertTrue(callback.on_criterion.call_count == train_steps*epochs)
        self.assertTrue(callback.on_backward.call_count == train_steps*epochs)
        self.assertTrue(callback.on_step_training.call_count == train_steps*epochs)
        callback.on_end_training.assert_called_once()
        callback.on_end_epoch.assert_called_once()
開發者ID:little1tow,項目名稱:torchbearer,代碼行數:32,代碼來源:test_torchbearer.py

示例5: test_main_loop_validation_setup

# 需要導入模塊: from torchbearer import Model [as 別名]
# 或者: from torchbearer.Model import fit_generator [as 別名]
    def test_main_loop_validation_setup(self):
        metric = Metric('test')

        data = [(torch.Tensor([1]), torch.Tensor([1])), (torch.Tensor([2]), torch.Tensor([2])), (torch.Tensor([3]), torch.Tensor([3]))]
        generator = DataLoader(data)
        valgenerator = DataLoader(data)
        train_steps = 2

        epochs = 1

        callback = MagicMock()

        torchmodel = MagicMock()
        torchmodel.forward = Mock(return_value=1)
        optimizer = MagicMock()

        loss = torch.tensor([2], requires_grad=True)
        criterion = Mock(return_value=loss)

        torchbearermodel = Model(torchmodel, optimizer, criterion, [metric])
        torchbearermodel._test_loop = Mock()
        torchbearerstate = torchbearermodel.fit_generator(generator, train_steps, epochs, 0, [callback],
                                                          validation_generator=valgenerator, initial_epoch=0,
                                                          pass_state=False)

        self.assertTrue(torchbearerstate[torchbearer.VALIDATION_STEPS] == len(valgenerator))
        self.assertTrue(torchbearerstate[torchbearer.VALIDATION_GENERATOR] == valgenerator)
開發者ID:little1tow,項目名稱:torchbearer,代碼行數:29,代碼來源:test_torchbearer.py

示例6: test_fit_valid_sets_args

# 需要導入模塊: from torchbearer import Model [as 別名]
# 或者: from torchbearer.Model import fit_generator [as 別名]
    def test_fit_valid_sets_args(self, gtvs):
        x = torch.rand(1,5)
        y = torch.rand(1,5)
        val_data = (1,2)
        val_split = 0.2
        shuffle = False

        torchmodel = MagicMock()
        torchmodel.forward = Mock(return_value=1)
        optimizer = MagicMock()
        metric = Metric('test')

        loss = torch.tensor([2], requires_grad=True)
        criterion = Mock(return_value=loss)

        gtvs.return_value = (1, 2)

        torchbearermodel = Model(torchmodel, optimizer, criterion, [metric])
        torchbearermodel.fit_generator = Mock()
        torchbearermodel.fit(x, y, 1, validation_data=val_data, validation_split=val_split, shuffle=shuffle)

        gtvs.assert_called_once()
        self.assertTrue(list(gtvs.call_args[0][0].numpy()[0]) == list(x.numpy()[0]))
        self.assertTrue(list(gtvs.call_args[0][1].numpy()[0]) == list(y.numpy()[0]))
        self.assertTrue(gtvs.call_args[0][2] == val_data)
        self.assertTrue(gtvs.call_args[0][3] == val_split)
        self.assertTrue(gtvs.call_args[1]['shuffle'] == shuffle)
開發者ID:little1tow,項目名稱:torchbearer,代碼行數:29,代碼來源:test_torchbearer.py

示例7: test_fit_no_valid

# 需要導入模塊: from torchbearer import Model [as 別名]
# 或者: from torchbearer.Model import fit_generator [as 別名]
    def test_fit_no_valid(self):
        x = torch.rand(1, 5)
        y = torch.rand(1, 5)

        torchmodel = MagicMock()
        torchmodel.forward = Mock(return_value=1)
        optimizer = MagicMock()
        metric = Metric('test')

        loss = torch.tensor([2], requires_grad=True)
        criterion = Mock(return_value=loss)

        torchbearermodel = Model(torchmodel, optimizer, criterion, [metric])
        torchbearermodel.fit_generator = Mock()
        fit = torchbearermodel.fit_generator
        torchbearermodel.fit(x, y, 1, validation_split=None)

        self.assertTrue(fit.call_args[1]['validation_generator'] is None)
開發者ID:little1tow,項目名稱:torchbearer,代碼行數:20,代碼來源:test_torchbearer.py

示例8: test_main_loop_backward

# 需要導入模塊: from torchbearer import Model [as 別名]
# 或者: from torchbearer.Model import fit_generator [as 別名]
    def test_main_loop_backward(self):
        metric = Metric('test')

        data = [(torch.Tensor([1]), torch.Tensor([1])), (torch.Tensor([2]), torch.Tensor([2])), (torch.Tensor([3]), torch.Tensor([3]))]
        generator = DataLoader(data)
        train_steps = None

        epochs = 1

        callback = MagicMock()

        torchmodel = MagicMock()
        torchmodel.forward = Mock(return_value=1)
        optimizer = MagicMock()

        loss = Mock()
        criterion = Mock(return_value=loss)

        torchbearermodel = Model(torchmodel, optimizer, criterion, [metric])
        torchbearerstate = torchbearermodel.fit_generator(generator, train_steps, epochs, 0, [callback], initial_epoch=0, pass_state=True)
        self.assertTrue(torchbearerstate[torchbearer.LOSS].backward.call_count == epochs*len(data))
開發者ID:little1tow,項目名稱:torchbearer,代碼行數:23,代碼來源:test_torchbearer.py

示例9: test_main_loop_pass_state

# 需要導入模塊: from torchbearer import Model [as 別名]
# 或者: from torchbearer.Model import fit_generator [as 別名]
    def test_main_loop_pass_state(self):
        metric = Metric('test')

        data = [(torch.Tensor([1]), torch.Tensor([1])), (torch.Tensor([2]), torch.Tensor([2])), (torch.Tensor([3]), torch.Tensor([3]))]
        generator = DataLoader(data)
        train_steps = None

        epochs = 1

        callback = MagicMock()

        torchmodel = MagicMock()
        torchmodel.forward = Mock(return_value=1)
        optimizer = MagicMock()

        loss = torch.tensor([2], requires_grad=True)
        criterion = Mock(return_value=loss)

        torchbearermodel = Model(torchmodel, optimizer, criterion, [metric])
        torchbearerstate = torchbearermodel.fit_generator(generator, train_steps, epochs, 0, [callback], initial_epoch=0, pass_state=True)

        self.assertTrue(len(torchbearerstate[torchbearer.MODEL].call_args) == 2)
開發者ID:little1tow,項目名稱:torchbearer,代碼行數:24,代碼來源:test_torchbearer.py

示例10: add_kld_loss_callback

# 需要導入模塊: from torchbearer import Model [as 別名]
# 或者: from torchbearer.Model import fit_generator [as 別名]
def add_kld_loss_callback(state):
    KLD = kld_Loss(state['mu'], state['logvar'])
    return KLD


def save_reconstruction_callback(num_images=8, folder='results/'):
    import os
    os.makedirs(os.path.dirname(folder), exist_ok=True)

    @torchbearer.callbacks.on_step_validation
    def saver(state):
        if state[torchbearer.BATCH] == 0:
            data = state[torchbearer.X]
            recon_batch = state[torchbearer.Y_PRED]
            comparison = torch.cat([data[:num_images],
                                    recon_batch.view(128, 1, 28, 28)[:num_images]])
            save_image(comparison.cpu(),
                       str(folder) + 'reconstruction_' + str(state[torchbearer.EPOCH]) + '.png', nrow=num_images)
    return saver


model = VAE()
optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=0.001)
loss = bce_loss

from torchbearer import Model

torchbearer_model = Model(model, optimizer, loss, metrics=['loss']).to('cuda')
torchbearer_model.fit_generator(traingen, epochs=10, validation_generator=testgen,
                                callbacks=[add_kld_loss_callback, save_reconstruction_callback()], pass_state=True)
開發者ID:little1tow,項目名稱:torchbearer,代碼行數:32,代碼來源:vae.py

示例11: super

# 需要導入模塊: from torchbearer import Model [as 別名]
# 或者: from torchbearer.Model import fit_generator [as 別名]
        super(SimpleModel, self).__init__()
        self.convs = nn.Sequential(
            nn.Conv2d(3, 16, stride=2, kernel_size=3),
            nn.BatchNorm2d(16),
            nn.ReLU(),
            nn.Conv2d(16, 32, stride=2, kernel_size=3),
            nn.BatchNorm2d(32),
            nn.ReLU(),
            nn.Conv2d(32, 64, stride=2, kernel_size=3),
            nn.BatchNorm2d(64),
            nn.ReLU()
        )

        self.classifier = nn.Linear(576, 10)

    def forward(self, x):
        x = self.convs(x)
        x = x.view(-1, 576)
        return self.classifier(x)


model = SimpleModel()

optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=0.001)
loss = nn.CrossEntropyLoss()

from torchbearer import Model

torchbearer_model = Model(model, optimizer, loss, metrics=['acc', 'loss']).to('cuda')
torchbearer_model.fit_generator(traingen, epochs=10, validation_generator=testgen)
開發者ID:little1tow,項目名稱:torchbearer,代碼行數:32,代碼來源:quickstart.py

示例12: kld_Loss

# 需要導入模塊: from torchbearer import Model [as 別名]
# 或者: from torchbearer.Model import fit_generator [as 別名]
    BCE = F.binary_cross_entropy(recon_x, x.view(-1, 784), size_average=False)
    return BCE


def kld_Loss(mu, logvar):
    KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
    return KLD


# Reconstruction + KL divergence losses summed over all elements and batch
def loss_function(y_pred, y_true):
    recon_x, mu, logvar = y_pred
    x = y_true

    BCE = bce_loss(recon_x, x)

    KLD = kld_Loss(mu, logvar)

    return BCE + KLD


model = VAE()

optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=0.001)
loss = loss_function

from torchbearer import Model

torchbearer_model = Model(model, optimizer, loss, metrics=['loss']).to('cuda')
torchbearer_model.fit_generator(traingen, epochs=10, validation_generator=testgen, pass_state=False)
開發者ID:little1tow,項目名稱:torchbearer,代碼行數:32,代碼來源:vae_standard.py


注:本文中的torchbearer.Model.fit_generator方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。