本文整理匯總了Python中tools.plotting.Histogram_properties.mc_error方法的典型用法代碼示例。如果您正苦於以下問題:Python Histogram_properties.mc_error方法的具體用法?Python Histogram_properties.mc_error怎麽用?Python Histogram_properties.mc_error使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tools.plotting.Histogram_properties
的用法示例。
在下文中一共展示了Histogram_properties.mc_error方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: plot_fit_results
# 需要導入模塊: from tools.plotting import Histogram_properties [as 別名]
# 或者: from tools.plotting.Histogram_properties import mc_error [as 別名]
def plot_fit_results(fit_results, initial_values, channel):
global variable, output_folder
title = electron_histogram_title if channel == "electron" else muon_histogram_title
histogram_properties = Histogram_properties()
histogram_properties.title = title
histogram_properties.x_axis_title = variable + " [GeV]"
histogram_properties.mc_error = 0.0
histogram_properties.legend_location = "upper right"
# we will need 4 histograms: TTJet, SingleTop, QCD, V+Jets
for sample in ["TTJet", "SingleTop", "QCD", "V+Jets"]:
histograms = {}
# absolute eta measurement as baseline
h_absolute_eta = None
h_before = None
histogram_properties.y_axis_title = "Fitted number of events for " + samples_latex[sample]
for fit_var_input in fit_results.keys():
latex_string = create_latex_string(fit_var_input)
fit_data = fit_results[fit_var_input][sample]
h = value_error_tuplelist_to_hist(fit_data, bin_edges[variable])
if fit_var_input == "absolute_eta":
h_absolute_eta = h
elif fit_var_input == "before":
h_before = h
else:
histograms[latex_string] = h
graphs = spread_x(histograms.values(), bin_edges[variable])
for key, graph in zip(histograms.keys(), graphs):
histograms[key] = graph
filename = sample.replace("+", "_") + "_fit_var_comparison_" + channel
histogram_properties.name = filename
histogram_properties.y_limits = 0, limit_range_y(h_absolute_eta)[1] * 1.3
histogram_properties.x_limits = bin_edges[variable][0], bin_edges[variable][-1]
h_initial_values = value_error_tuplelist_to_hist(initial_values[sample], bin_edges[variable])
h_initial_values.Scale(closure_tests["simple"][sample])
compare_measurements(
models={
fit_variables_latex["absolute_eta"]: h_absolute_eta,
"initial values": h_initial_values,
"before": h_before,
},
measurements=histograms,
show_measurement_errors=True,
histogram_properties=histogram_properties,
save_folder=output_folder,
save_as=["png", "pdf"],
)
示例2: plot_fit_results
# 需要導入模塊: from tools.plotting import Histogram_properties [as 別名]
# 或者: from tools.plotting.Histogram_properties import mc_error [as 別名]
def plot_fit_results( fit_results, initial_values, channel ):
global variable, output_folder
title = electron_histogram_title if channel == 'electron' else muon_histogram_title
histogram_properties = Histogram_properties()
histogram_properties.title = title
histogram_properties.x_axis_title = variable + ' [GeV]'
histogram_properties.mc_error = 0.0
histogram_properties.legend_location = 'upper right'
# we will need 4 histograms: TTJet, SingleTop, QCD, V+Jets
for sample in ['TTJet', 'SingleTop', 'QCD', 'V+Jets']:
histograms = {}
# absolute eta measurement as baseline
h_absolute_eta = None
h_before = None
histogram_properties.y_axis_title = 'Fitted number of events for ' + samples_latex[sample]
for fit_var_input in fit_results.keys():
latex_string = create_latex_string( fit_var_input )
fit_data = fit_results[fit_var_input][sample]
h = value_error_tuplelist_to_hist( fit_data,
bin_edges[variable] )
if fit_var_input == 'absolute_eta':
h_absolute_eta = h
elif fit_var_input == 'before':
h_before = h
else:
histograms[latex_string] = h
graphs = spread_x( histograms.values(), bin_edges[variable] )
for key, graph in zip( histograms.keys(), graphs ):
histograms[key] = graph
filename = sample.replace( '+', '_' ) + '_fit_var_comparison_' + channel
histogram_properties.name = filename
histogram_properties.y_limits = 0, limit_range_y( h_absolute_eta )[1] * 1.3
histogram_properties.x_limits = bin_edges[variable][0], bin_edges[variable][-1]
h_initial_values = value_error_tuplelist_to_hist( initial_values[sample],
bin_edges[variable] )
h_initial_values.Scale(closure_tests['simple'][sample])
compare_measurements( models = {fit_variables_latex['absolute_eta']:h_absolute_eta,
'initial values' : h_initial_values,
'before': h_before},
measurements = histograms,
show_measurement_errors = True,
histogram_properties = histogram_properties,
save_folder = output_folder,
save_as = ['png', 'pdf'] )
示例3: plot_fit_variable
# 需要導入模塊: from tools.plotting import Histogram_properties [as 別名]
# 或者: from tools.plotting.Histogram_properties import mc_error [as 別名]
def plot_fit_variable( histograms, fit_variable, variable, bin_range,
fit_variable_distribution, qcd_fit_variable_distribution,
title, save_path ):
global fit_variable_properties, b_tag_bin, save_as, b_tag_bin_ctl
mc_uncertainty = 0.10
prepare_histograms( histograms, rebin = fit_variable_properties[fit_variable]['rebin'], scale_factor = measurement_config.luminosity_scale )
histogram_properties = Histogram_properties()
histogram_properties.x_axis_title = fit_variable_properties[fit_variable]['x-title']
histogram_properties.y_axis_title = fit_variable_properties[fit_variable]['y-title']
histogram_properties.x_limits = [fit_variable_properties[fit_variable]['min'], fit_variable_properties[fit_variable]['max']]
histogram_lables = ['data', 'QCD', 'V+Jets', 'Single-Top', samples_latex['TTJet']]
histogram_colors = ['black', 'yellow', 'green', 'magenta', 'red']
# qcd_from_data = histograms['data'][qcd_fit_variable_distribution].Clone()
# clean against other processes
histograms_for_cleaning = {'data':histograms['data'][qcd_fit_variable_distribution],
'V+Jets':histograms['V+Jets'][qcd_fit_variable_distribution],
'SingleTop':histograms['SingleTop'][qcd_fit_variable_distribution],
'TTJet':histograms['TTJet'][qcd_fit_variable_distribution]}
qcd_from_data = clean_control_region( histograms_for_cleaning, subtract = ['TTJet', 'V+Jets', 'SingleTop'] )
histograms_to_draw = [histograms['data'][qcd_fit_variable_distribution],
histograms['QCD'][qcd_fit_variable_distribution],
histograms['V+Jets'][qcd_fit_variable_distribution],
histograms['SingleTop'][qcd_fit_variable_distribution],
histograms['TTJet'][qcd_fit_variable_distribution]]
histogram_properties.title = title + ', ' + b_tag_bins_latex[b_tag_bin_ctl]
histogram_properties.name = variable + '_' + bin_range + '_' + fit_variable + '_%s_QCDConversions' % b_tag_bin_ctl
make_data_mc_comparison_plot( histograms_to_draw, histogram_lables, histogram_colors,
histogram_properties,
save_folder = save_path + '/qcd/',
show_ratio = False,
save_as = save_as,
)
histograms_to_draw = [qcd_from_data,
histograms['QCD'][qcd_fit_variable_distribution],
]
histogram_properties.name = variable + '_' + bin_range + '_' + fit_variable + '_%s_QCDConversions_subtracted' % b_tag_bin_ctl
make_data_mc_comparison_plot( histograms_to_draw,
histogram_lables = ['data', 'QCD'],
histogram_colors = ['black', 'yellow'],
histogram_properties = histogram_properties,
save_folder = save_path + '/qcd/',
show_ratio = False,
save_as = save_as,
)
# scale QCD to predicted
n_qcd_predicted_mc = histograms['QCD'][fit_variable_distribution].Integral()
n_qcd_fit_variable_distribution = qcd_from_data.Integral()
if not n_qcd_fit_variable_distribution == 0:
qcd_from_data.Scale( 1.0 / n_qcd_fit_variable_distribution * n_qcd_predicted_mc )
histograms_to_draw = [histograms['data'][fit_variable_distribution], qcd_from_data,
histograms['V+Jets'][fit_variable_distribution],
histograms['SingleTop'][fit_variable_distribution], histograms['TTJet'][fit_variable_distribution]]
histogram_properties.title = title + ', ' + b_tag_bins_latex[b_tag_bin]
histogram_properties.name = variable + '_' + bin_range + '_' + fit_variable + '_' + b_tag_bin
make_data_mc_comparison_plot( histograms_to_draw,
histogram_lables,
histogram_colors,
histogram_properties,
save_folder = save_path,
show_ratio = False,
save_as = save_as,
)
histogram_properties.mc_error = mc_uncertainty
histogram_properties.mc_errors_label = '$\mathrm{t}\\bar{\mathrm{t}}$ uncertainty'
histogram_properties.name = variable + '_' + bin_range + '_' + fit_variable + '_' + b_tag_bin + '_templates'
# change histogram order for better visibility
histograms_to_draw = [histograms['TTJet'][fit_variable_distribution] + histograms['SingleTop'][fit_variable_distribution],
histograms['TTJet'][fit_variable_distribution],
histograms['SingleTop'][fit_variable_distribution],
histograms['V+Jets'][fit_variable_distribution],
qcd_from_data]
histogram_lables = ['QCD', 'V+Jets', 'Single-Top', samples_latex['TTJet'], samples_latex['TTJet'] + ' + ' + 'Single-Top']
histogram_lables.reverse()
# change QCD color to orange for better visibility
histogram_colors = ['orange', 'green', 'magenta', 'red', 'black']
histogram_colors.reverse()
make_shape_comparison_plot( shapes = histograms_to_draw,
names = histogram_lables,
colours = histogram_colors,
histogram_properties = histogram_properties,
fill_area = False,
alpha = 1,
save_folder = save_path,
save_as = save_as,
)
示例4: make_ttbarReco_plot
# 需要導入模塊: from tools.plotting import Histogram_properties [as 別名]
# 或者: from tools.plotting.Histogram_properties import mc_error [as 別名]
#.........這裏部分代碼省略.........
selection = 'SolutionCategory == 1'
histogramsCorrect = get_histograms_from_trees( trees = [signal_region_tree], branch = branchName, weightBranch = '1', selection = selection, files = histogram_files, nBins = nBins, xMin = x_limits[0], xMax = x_limits[-1] )
selection = 'SolutionCategory == 2'
histogramsNotSL = get_histograms_from_trees( trees = [signal_region_tree], branch = branchName, weightBranch = '1', selection = selection, files = histogram_files, nBins = nBins, xMin = x_limits[0], xMax = x_limits[-1] )
selection = 'SolutionCategory == 3'
histogramsNotReco = get_histograms_from_trees( trees = [signal_region_tree], branch = branchName, weightBranch = '1', selection = selection, files = histogram_files, nBins = nBins, xMin = x_limits[0], xMax = x_limits[-1] )
selection = 'SolutionCategory > 3'
histogramsWrong = get_histograms_from_trees( trees = [signal_region_tree], branch = branchName, weightBranch = '1', selection = selection, files = histogram_files, nBins = nBins, xMin = x_limits[0], xMax = x_limits[-1] )
# Split histograms up into signal/control (?)
signal_region_hists = {}
inclusive_control_region_hists = {}
for sample in histograms.keys():
signal_region_hists[sample] = histograms[sample][signal_region_tree]
if use_qcd_data_region:
inclusive_control_region_hists[sample] = histograms[sample][control_region_tree]
prepare_histograms( histograms, rebin = 1, scale_factor = measurement_config.luminosity_scale )
prepare_histograms( histogramsNoSolution, rebin = 1, scale_factor = measurement_config.luminosity_scale )
prepare_histograms( histogramsCorrect, rebin = 1, scale_factor = measurement_config.luminosity_scale )
prepare_histograms( histogramsNotSL, rebin = 1, scale_factor = measurement_config.luminosity_scale )
prepare_histograms( histogramsNotReco, rebin = 1, scale_factor = measurement_config.luminosity_scale )
prepare_histograms( histogramsWrong, rebin = 1, scale_factor = measurement_config.luminosity_scale )
qcd_from_data = signal_region_hists['QCD']
# Which histograms to draw, and properties
histograms_to_draw = [signal_region_hists['data'], qcd_from_data,
signal_region_hists['V+Jets'],
signal_region_hists['SingleTop'],
histogramsNoSolution['TTJet'][signal_region_tree],
histogramsNotSL['TTJet'][signal_region_tree],
histogramsNotReco['TTJet'][signal_region_tree],
histogramsWrong['TTJet'][signal_region_tree],
histogramsCorrect['TTJet'][signal_region_tree]
]
histogram_lables = ['data', 'QCD', 'V+Jets', 'Single-Top',
samples_latex['TTJet'] + ' - no solution',
samples_latex['TTJet'] + ' - not SL',
samples_latex['TTJet'] + ' - not reconstructible',
samples_latex['TTJet'] + ' - wrong reco',
samples_latex['TTJet'] + ' - correct',
]
histogram_colors = ['black', 'yellow', 'green', 'magenta',
'black',
'burlywood',
'chartreuse',
'blue',
'red'
]
histogram_properties = Histogram_properties()
histogram_properties.name = name_prefix + b_tag_bin
if category != 'central':
histogram_properties.name += '_' + category
histogram_properties.title = title
histogram_properties.x_axis_title = x_axis_title
histogram_properties.y_axis_title = y_axis_title
histogram_properties.x_limits = x_limits
histogram_properties.y_limits = y_limits
histogram_properties.y_max_scale = y_max_scale
histogram_properties.xerr = None
# workaround for rootpy issue #638
histogram_properties.emptybins = True
if b_tag_bin:
histogram_properties.additional_text = channel_latex[channel] + ', ' + b_tag_bins_latex[b_tag_bin]
else:
histogram_properties.additional_text = channel_latex[channel]
histogram_properties.legend_location = legend_location
histogram_properties.cms_logo_location = cms_logo_location
histogram_properties.preliminary = preliminary
histogram_properties.set_log_y = log_y
histogram_properties.legend_color = legend_color
if ratio_y_limits:
histogram_properties.ratio_y_limits = ratio_y_limits
if normalise_to_fit:
histogram_properties.mc_error = get_normalisation_error( normalisation )
histogram_properties.mc_errors_label = 'fit uncertainty'
else:
histogram_properties.mc_error = mc_uncertainty
histogram_properties.mc_errors_label = 'MC unc.'
# Actually draw histograms
make_data_mc_comparison_plot( histograms_to_draw, histogram_lables, histogram_colors,
histogram_properties, save_folder = output_folder,
show_ratio = False, normalise = normalise,
)
histogram_properties.name += '_with_ratio'
loc = histogram_properties.legend_location
# adjust legend location as it is relative to canvas!
histogram_properties.legend_location = ( loc[0], loc[1] + 0.05 )
make_data_mc_comparison_plot( histograms_to_draw, histogram_lables, histogram_colors,
histogram_properties, save_folder = output_folder,
show_ratio = True, normalise = normalise,
)
示例5: make_plot
# 需要導入模塊: from tools.plotting import Histogram_properties [as 別名]
# 或者: from tools.plotting.Histogram_properties import mc_error [as 別名]
#.........這裏部分代碼省略.........
signal_region_hists[sample] = histograms[sample][control_region_tree]
elif sample is 'QCD' :
signal_region_hists[sample] = histograms[sample][signal_region_tree]
else:
del signal_region_hists[sample]
if use_qcd_data_region:
control_region_hists[sample] = histograms_QCDControlRegion[sample][qcd_control_region]
# Prepare histograms
if normalise_to_fit:
# only scale signal region to fit (results are invalid for control region)
prepare_histograms( signal_region_hists, rebin = rebin,
scale_factor = measurement_config.luminosity_scale,
normalisation = normalisation )
elif normalise_to_data:
totalMC = 0
for sample in signal_region_hists:
if sample is 'data' : continue
totalMC += signal_region_hists[sample].Integral()
newScale = signal_region_hists['data'].Integral() / totalMC
prepare_histograms( signal_region_hists, rebin = rebin,
scale_factor = newScale,
)
else:
print measurement_config.luminosity_scale
prepare_histograms( signal_region_hists, rebin = rebin,
scale_factor = measurement_config.luminosity_scale )
prepare_histograms( control_region_hists, rebin = rebin,
scale_factor = measurement_config.luminosity_scale )
# Use qcd from data control region or not
qcd_from_data = None
if use_qcd_data_region:
qcd_from_data = clean_control_region( control_region_hists,
subtract = ['TTJet', 'V+Jets', 'SingleTop'] )
# Normalise control region correctly
nBins = signal_region_hists['QCD'].GetNbinsX()
n, error = signal_region_hists['QCD'].integral(0,nBins+1,error=True)
n_qcd_predicted_mc_signal = ufloat( n, error)
n, error = control_region_hists['QCD'].integral(0,nBins+1,error=True)
n_qcd_predicted_mc_control = ufloat( n, error)
n, error = qcd_from_data.integral(0,nBins+1,error=True)
n_qcd_control_region = ufloat( n, error)
if not n_qcd_control_region == 0:
dataDrivenQCDScale = n_qcd_predicted_mc_signal / n_qcd_predicted_mc_control
print 'Overall scale : ',dataDrivenQCDScale
qcd_from_data.Scale( dataDrivenQCDScale.nominal_value )
signalToControlScale = n_qcd_predicted_mc_signal / n_qcd_control_region
dataToMCscale = n_qcd_control_region / n_qcd_predicted_mc_control
print "Signal to control :",signalToControlScale
print "QCD scale : ",dataToMCscale
else:
qcd_from_data = signal_region_hists['QCD']
# Which histograms to draw, and properties
histograms_to_draw = []
histogram_lables = []
histogram_colors = []
if compare_qcd_signal_with_data_control :
histograms_to_draw = [signal_region_hists['data'], qcd_from_data ]
histogram_lables = ['data', 'QCD']
histogram_colors = ['black', 'yellow']
else :
histograms_to_draw = [signal_region_hists['data'], qcd_from_data,
signal_region_hists['V+Jets'],
signal_region_hists['SingleTop'],
signal_region_hists['TTJet']]
histogram_lables = ['data', 'QCD', 'V+Jets', 'Single-Top', samples_latex['TTJet']]
histogram_colors = [colours['data'], colours['QCD'], colours['V+Jets'], colours['Single-Top'], colours['TTJet'] ]
print list(qcd_from_data.y())
histogramsToCompare[qcd_data_region] = qcd_from_data
print histogramsToCompare
histogram_properties = Histogram_properties()
histogram_properties.name = 'QCD_control_region_comparison_' + channel + '_' + branchName
histogram_properties.title = title
histogram_properties.x_axis_title = x_axis_title
histogram_properties.y_axis_title = y_axis_title
histogram_properties.x_limits = x_limits
histogram_properties.y_limits = y_limits
histogram_properties.mc_error = 0.0
histogram_properties.legend_location = ( 0.98, 0.78 )
histogram_properties.ratio_y_limits = ratio_y_limits
if 'electron' in channel:
make_control_region_comparison(histogramsToCompare['QCDConversions'], histogramsToCompare['QCD non iso e+jets'],
name_region_1='Conversions', name_region_2='Non Iso',
histogram_properties=histogram_properties, save_folder=output_folder)
elif 'muon' in channel:
make_control_region_comparison(histogramsToCompare['QCD iso > 0.3'], histogramsToCompare['QCD 0.12 < iso <= 0.3'],
name_region_1='QCD iso > 0.3', name_region_2='QCD 0.12 < iso <= 0.3',
histogram_properties=histogram_properties, save_folder=output_folder)
示例6: Histogram_properties
# 需要導入模塊: from tools.plotting import Histogram_properties [as 別名]
# 或者: from tools.plotting.Histogram_properties import mc_error [as 別名]
qcd_predicted_mc = histograms['QCD'][control_region]
histograms_to_draw = [histograms['data'][control_region], qcd_predicted_mc,
histograms['V+Jets'][control_region],
histograms['SingleTop'][control_region], histograms['TTJet'][control_region]]
histogram_lables = ['data', 'QCD', 'V+Jets', 'Single-Top', samples_latex['TTJet']]
histogram_colors = ['black', 'yellow', 'green', 'magenta', 'red']
histogram_properties = Histogram_properties()
histogram_properties.name = 'EPlusJets_BJets_invmass_' + b_tag_bin
histogram_properties.title = e_title + ', ' + b_tag_bins_latex[b_tag_bin]
histogram_properties.x_axis_title = '$M_{\mathrm{b}\\bar{\mathrm{b}}}$'
histogram_properties.y_axis_title = 'Normalised events/(20 GeV)'
histogram_properties.x_limits = [0, 800]
histogram_properties.mc_error = 0.15
make_data_mc_comparison_plot(histograms_to_draw, histogram_lables, histogram_colors,
histogram_properties, save_folder = output_folder, show_ratio = False)
histogram_properties.name += '_with_ratio'
make_data_mc_comparison_plot(histograms_to_draw, histogram_lables, histogram_colors,
histogram_properties, save_folder = output_folder, show_ratio = True)
#bjet invariant mass
b_tag_bin = '3btags'
control_region = 'TTbar_plus_X_analysis/EPlusJets/Ref selection/bjet_invariant_mass_' + b_tag_bin
histograms = get_histograms_from_files([control_region], histogram_files)
prepare_histograms(histograms, rebin=10, scale_factor = measurement_config.luminosity_scale)
qcd_predicted_mc = histograms['QCD'][control_region]
示例7: do_shape_check
# 需要導入模塊: from tools.plotting import Histogram_properties [as 別名]
# 或者: from tools.plotting.Histogram_properties import mc_error [as 別名]
def do_shape_check(channel, control_region_1, control_region_2, variable, normalisation, title, x_title, y_title, x_limits, y_limits,
name_region_1='conversions' , name_region_2='non-isolated electrons', name_region_3='fit results', rebin=1):
global b_tag_bin
# QCD shape comparison
if channel == 'electron':
histograms = get_histograms_from_files([control_region_1, control_region_2], histogram_files)
region_1 = histograms[channel][control_region_1].Clone() - histograms['TTJet'][control_region_1].Clone() - histograms['V+Jets'][control_region_1].Clone() - histograms['SingleTop'][control_region_1].Clone()
region_2 = histograms[channel][control_region_2].Clone() - histograms['TTJet'][control_region_2].Clone() - histograms['V+Jets'][control_region_2].Clone() - histograms['SingleTop'][control_region_2].Clone()
region_1.Rebin(rebin)
region_2.Rebin(rebin)
histogram_properties = Histogram_properties()
histogram_properties.name = 'QCD_control_region_comparison_' + channel + '_' + variable + '_' + b_tag_bin
histogram_properties.title = title + ', ' + b_tag_bins_latex[b_tag_bin]
histogram_properties.x_axis_title = x_title
histogram_properties.y_axis_title = 'arbitrary units/(0.1)'
histogram_properties.x_limits = x_limits
histogram_properties.y_limits = y_limits[0]
histogram_properties.mc_error = 0.0
histogram_properties.legend_location = 'upper right'
make_control_region_comparison(region_1, region_2,
name_region_1=name_region_1, name_region_2=name_region_2,
histogram_properties=histogram_properties, save_folder=output_folder)
# QCD shape comparison to fit results
histograms = get_histograms_from_files([control_region_1], histogram_files)
region_1_tmp = histograms[channel][control_region_1].Clone() - histograms['TTJet'][control_region_1].Clone() - histograms['V+Jets'][control_region_1].Clone() - histograms['SingleTop'][control_region_1].Clone()
region_1 = rebin_asymmetric(region_1_tmp, bin_edges[variable])
fit_results_QCD = normalisation[variable]['QCD']
region_2 = value_error_tuplelist_to_hist(fit_results_QCD, bin_edges_vis[variable])
histogram_properties = Histogram_properties()
histogram_properties.name = 'QCD_control_region_comparison_' + channel + '_' + variable + '_fits_with_conversions_' + b_tag_bin
histogram_properties.title = title + ', ' + b_tag_bins_latex[b_tag_bin]
histogram_properties.x_axis_title = x_title
histogram_properties.y_axis_title = 'arbitrary units/(0.1)'
histogram_properties.x_limits = x_limits
histogram_properties.y_limits = y_limits[1]
histogram_properties.mc_error = 0.0
histogram_properties.legend_location = 'upper right'
make_control_region_comparison(region_1, region_2,
name_region_1=name_region_1, name_region_2=name_region_3,
histogram_properties=histogram_properties, save_folder=output_folder)
histograms = get_histograms_from_files([control_region_2], histogram_files)
region_1_tmp = histograms[channel][control_region_2].Clone() - histograms['TTJet'][control_region_2].Clone() - histograms['V+Jets'][control_region_2].Clone() - histograms['SingleTop'][control_region_2].Clone()
region_1 = rebin_asymmetric(region_1_tmp, bin_edges_vis[variable])
fit_results_QCD = normalisation[variable]['QCD']
region_2 = value_error_tuplelist_to_hist(fit_results_QCD, bin_edges[variable])
histogram_properties = Histogram_properties()
histogram_properties.name = 'QCD_control_region_comparison_' + channel + '_' + variable + '_fits_with_noniso_' + b_tag_bin
histogram_properties.title = title + ', ' + b_tag_bins_latex[b_tag_bin]
histogram_properties.x_axis_title = x_title
histogram_properties.y_axis_title = 'arbitrary units/(0.1)'
histogram_properties.x_limits = x_limits
histogram_properties.y_limits = y_limits[1]
histogram_properties.mc_error = 0.0
histogram_properties.legend_location = 'upper right'
make_control_region_comparison(region_1, region_2,
name_region_1=name_region_2, name_region_2=name_region_3,
histogram_properties=histogram_properties, save_folder=output_folder)
示例8: do_shape_check
# 需要導入模塊: from tools.plotting import Histogram_properties [as 別名]
# 或者: from tools.plotting.Histogram_properties import mc_error [as 別名]
def do_shape_check(
channel,
control_region_1,
control_region_2,
variable,
normalisation,
title,
x_title,
y_title,
x_limits,
y_limits,
name_region_1="conversions",
name_region_2="non-isolated electrons",
name_region_3="fit results",
rebin=1,
):
global b_tag_bin
# QCD shape comparison
if channel == "electron":
histograms = get_histograms_from_files([control_region_1, control_region_2], histogram_files)
region_1 = (
histograms[channel][control_region_1].Clone()
- histograms["TTJet"][control_region_1].Clone()
- histograms["V+Jets"][control_region_1].Clone()
- histograms["SingleTop"][control_region_1].Clone()
)
region_2 = (
histograms[channel][control_region_2].Clone()
- histograms["TTJet"][control_region_2].Clone()
- histograms["V+Jets"][control_region_2].Clone()
- histograms["SingleTop"][control_region_2].Clone()
)
region_1.Rebin(rebin)
region_2.Rebin(rebin)
histogram_properties = Histogram_properties()
histogram_properties.name = "QCD_control_region_comparison_" + channel + "_" + variable + "_" + b_tag_bin
histogram_properties.title = title + ", " + b_tag_bins_latex[b_tag_bin]
histogram_properties.x_axis_title = x_title
histogram_properties.y_axis_title = "arbitrary units/(0.1)"
histogram_properties.x_limits = x_limits
histogram_properties.y_limits = y_limits[0]
histogram_properties.mc_error = 0.0
histogram_properties.legend_location = "upper right"
make_control_region_comparison(
region_1,
region_2,
name_region_1=name_region_1,
name_region_2=name_region_2,
histogram_properties=histogram_properties,
save_folder=output_folder,
)
# QCD shape comparison to fit results
histograms = get_histograms_from_files([control_region_1], histogram_files)
region_1_tmp = (
histograms[channel][control_region_1].Clone()
- histograms["TTJet"][control_region_1].Clone()
- histograms["V+Jets"][control_region_1].Clone()
- histograms["SingleTop"][control_region_1].Clone()
)
region_1 = rebin_asymmetric(region_1_tmp, bin_edges[variable])
fit_results_QCD = normalisation[variable]["QCD"]
region_2 = value_error_tuplelist_to_hist(fit_results_QCD, bin_edges[variable])
histogram_properties = Histogram_properties()
histogram_properties.name = (
"QCD_control_region_comparison_" + channel + "_" + variable + "_fits_with_conversions_" + b_tag_bin
)
histogram_properties.title = title + ", " + b_tag_bins_latex[b_tag_bin]
histogram_properties.x_axis_title = x_title
histogram_properties.y_axis_title = "arbitrary units/(0.1)"
histogram_properties.x_limits = x_limits
histogram_properties.y_limits = y_limits[1]
histogram_properties.mc_error = 0.0
histogram_properties.legend_location = "upper right"
make_control_region_comparison(
region_1,
region_2,
name_region_1=name_region_1,
name_region_2=name_region_3,
histogram_properties=histogram_properties,
save_folder=output_folder,
)
histograms = get_histograms_from_files([control_region_2], histogram_files)
region_1_tmp = (
histograms[channel][control_region_2].Clone()
- histograms["TTJet"][control_region_2].Clone()
- histograms["V+Jets"][control_region_2].Clone()
- histograms["SingleTop"][control_region_2].Clone()
)
region_1 = rebin_asymmetric(region_1_tmp, bin_edges[variable])
fit_results_QCD = normalisation[variable]["QCD"]
#.........這裏部分代碼省略.........
示例9: make_correlation_plot_from_file
# 需要導入模塊: from tools.plotting import Histogram_properties [as 別名]
# 或者: from tools.plotting.Histogram_properties import mc_error [as 別名]
def make_correlation_plot_from_file( channel, variable, fit_variables, CoM, title, x_title, y_title, x_limits, y_limits, rebin = 1, save_folder = 'plots/fitchecks/', save_as = ['pdf', 'png'] ):
# global b_tag_bin
parameters = ["TTJet", "SingleTop", "V+Jets", "QCD"]
parameters_latex = []
for template in parameters:
parameters_latex.append(samples_latex[template])
input_file = open( "logs/01_%s_fit_%dTeV_%s.log" % ( variable, CoM, fit_variables ), "r" )
# cycle through the lines in the file
for line_number, line in enumerate( input_file ):
# for now, only make plots for the fits for the central measurement
if "central" in line:
# matrix we want begins 11 lines below the line with the measurement ("central")
line_number = line_number + 11
break
input_file.close()
#Note: For some reason, the fit outputs the correlation matrix with the templates in the following order:
#parameter1: QCD
#parameter2: SingleTop
#parameter3: TTJet
#parameter4: V+Jets
for variable_bin in variable_bins_ROOT[variable]:
weights = {}
if channel == 'electron':
#formula to calculate the number of lines below "central" to access in each loop
number_of_lines_down = (variable_bins_ROOT[variable].index( variable_bin ) * 12)
#Get QCD correlations
matrix_line = linecache.getline( "logs/01_%s_fit_%dTeV_%s.log" % ( variable, CoM, fit_variables ), line_number + number_of_lines_down )
weights["QCD_QCD"] = matrix_line.split()[2]
weights["QCD_SingleTop"] = matrix_line.split()[3]
weights["QCD_TTJet"] = matrix_line.split()[4]
weights["QCD_V+Jets"] = matrix_line.split()[5]
#Get SingleTop correlations
matrix_line = linecache.getline( "logs/01_%s_fit_%dTeV_%s.log" % ( variable, CoM, fit_variables ), line_number + number_of_lines_down + 1 )
weights["SingleTop_QCD"] = matrix_line.split()[2]
weights["SingleTop_SingleTop"] = matrix_line.split()[3]
weights["SingleTop_TTJet"] = matrix_line.split()[4]
weights["SingleTop_V+Jets"] = matrix_line.split()[5]
#Get TTJet correlations
matrix_line = linecache.getline( "logs/01_%s_fit_%dTeV_%s.log" % ( variable, CoM, fit_variables ), line_number + number_of_lines_down + 2 )
weights["TTJet_QCD"] = matrix_line.split()[2]
weights["TTJet_SingleTop"] = matrix_line.split()[3]
weights["TTJet_TTJet"] = matrix_line.split()[4]
weights["TTJet_V+Jets"] = matrix_line.split()[5]
#Get V+Jets correlations
matrix_line = linecache.getline( "logs/01_%s_fit_%dTeV_%s.log" % ( variable, CoM, fit_variables ), line_number + number_of_lines_down + 3 )
weights["V+Jets_QCD"] = matrix_line.split()[2]
weights["V+Jets_SingleTop"] = matrix_line.split()[3]
weights["V+Jets_TTJet"] = matrix_line.split()[4]
weights["V+Jets_V+Jets"] = matrix_line.split()[5]
if channel == 'muon':
#formula to calculate the number of lines below "central" to access in each bin loop
number_of_lines_down = ( len( variable_bins_ROOT [variable] ) * 12 ) + ( variable_bins_ROOT[variable].index( variable_bin ) * 12 )
#Get QCD correlations
matrix_line = linecache.getline( "logs/01_%s_fit_%dTeV_%s.log" % ( variable, CoM, fit_variables ), line_number + number_of_lines_down )
weights["QCD_QCD"] = matrix_line.split()[2]
weights["QCD_SingleTop"] = matrix_line.split()[3]
weights["QCD_TTJet"] = matrix_line.split()[4]
weights["QCD_V+Jets"] = matrix_line.split()[5]
#Get SingleTop correlations
matrix_line = linecache.getline( "logs/01_%s_fit_%dTeV_%s.log" % ( variable, CoM, fit_variables ), line_number + number_of_lines_down + 1 )
weights["SingleTop_QCD"] = matrix_line.split()[2]
weights["SingleTop_SingleTop"] = matrix_line.split()[3]
weights["SingleTop_TTJet"] = matrix_line.split()[4]
weights["SingleTop_V+Jets"] = matrix_line.split()[5]
#Get TTJet correlations
matrix_line = linecache.getline( "logs/01_%s_fit_%dTeV_%s.log" % ( variable, CoM, fit_variables ), line_number + number_of_lines_down + 2 )
weights["TTJet_QCD"] = matrix_line.split()[2]
weights["TTJet_SingleTop"] = matrix_line.split()[3]
weights["TTJet_TTJet"] = matrix_line.split()[4]
weights["TTJet_V+Jets"] = matrix_line.split()[5]
#Get V+Jets correlations
matrix_line = linecache.getline( "logs/01_%s_fit_%dTeV_%s.log" % ( variable, CoM, fit_variables ), line_number + number_of_lines_down + 3 )
weights["V+Jets_QCD"] = matrix_line.split()[2]
weights["V+Jets_SingleTop"] = matrix_line.split()[3]
weights["V+Jets_TTJet"] = matrix_line.split()[4]
weights["V+Jets_V+Jets"] = matrix_line.split()[5]
#Create histogram
histogram_properties = Histogram_properties()
histogram_properties.title = title
histogram_properties.name = 'Correlations_' + channel + '_' + variable + '_' + variable_bin
histogram_properties.y_axis_title = y_title
histogram_properties.x_axis_title = x_title
histogram_properties.y_limits = y_limits
histogram_properties.x_limits = x_limits
histogram_properties.mc_error = 0.0
histogram_properties.legend_location = 'upper right'
#.........這裏部分代碼省略.........