本文整理匯總了Python中tools.plotting.Histogram_properties.emptybins方法的典型用法代碼示例。如果您正苦於以下問題:Python Histogram_properties.emptybins方法的具體用法?Python Histogram_properties.emptybins怎麽用?Python Histogram_properties.emptybins使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tools.plotting.Histogram_properties
的用法示例。
在下文中一共展示了Histogram_properties.emptybins方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: make_ttbarReco_plot
# 需要導入模塊: from tools.plotting import Histogram_properties [as 別名]
# 或者: from tools.plotting.Histogram_properties import emptybins [as 別名]
#.........這裏部分代碼省略.........
selection = 'SolutionCategory == 1'
histogramsCorrect = get_histograms_from_trees( trees = [signal_region_tree], branch = branchName, weightBranch = '1', selection = selection, files = histogram_files, nBins = nBins, xMin = x_limits[0], xMax = x_limits[-1] )
selection = 'SolutionCategory == 2'
histogramsNotSL = get_histograms_from_trees( trees = [signal_region_tree], branch = branchName, weightBranch = '1', selection = selection, files = histogram_files, nBins = nBins, xMin = x_limits[0], xMax = x_limits[-1] )
selection = 'SolutionCategory == 3'
histogramsNotReco = get_histograms_from_trees( trees = [signal_region_tree], branch = branchName, weightBranch = '1', selection = selection, files = histogram_files, nBins = nBins, xMin = x_limits[0], xMax = x_limits[-1] )
selection = 'SolutionCategory > 3'
histogramsWrong = get_histograms_from_trees( trees = [signal_region_tree], branch = branchName, weightBranch = '1', selection = selection, files = histogram_files, nBins = nBins, xMin = x_limits[0], xMax = x_limits[-1] )
# Split histograms up into signal/control (?)
signal_region_hists = {}
inclusive_control_region_hists = {}
for sample in histograms.keys():
signal_region_hists[sample] = histograms[sample][signal_region_tree]
if use_qcd_data_region:
inclusive_control_region_hists[sample] = histograms[sample][control_region_tree]
prepare_histograms( histograms, rebin = 1, scale_factor = measurement_config.luminosity_scale )
prepare_histograms( histogramsNoSolution, rebin = 1, scale_factor = measurement_config.luminosity_scale )
prepare_histograms( histogramsCorrect, rebin = 1, scale_factor = measurement_config.luminosity_scale )
prepare_histograms( histogramsNotSL, rebin = 1, scale_factor = measurement_config.luminosity_scale )
prepare_histograms( histogramsNotReco, rebin = 1, scale_factor = measurement_config.luminosity_scale )
prepare_histograms( histogramsWrong, rebin = 1, scale_factor = measurement_config.luminosity_scale )
qcd_from_data = signal_region_hists['QCD']
# Which histograms to draw, and properties
histograms_to_draw = [signal_region_hists['data'], qcd_from_data,
signal_region_hists['V+Jets'],
signal_region_hists['SingleTop'],
histogramsNoSolution['TTJet'][signal_region_tree],
histogramsNotSL['TTJet'][signal_region_tree],
histogramsNotReco['TTJet'][signal_region_tree],
histogramsWrong['TTJet'][signal_region_tree],
histogramsCorrect['TTJet'][signal_region_tree]
]
histogram_lables = ['data', 'QCD', 'V+Jets', 'Single-Top',
samples_latex['TTJet'] + ' - no solution',
samples_latex['TTJet'] + ' - not SL',
samples_latex['TTJet'] + ' - not reconstructible',
samples_latex['TTJet'] + ' - wrong reco',
samples_latex['TTJet'] + ' - correct',
]
histogram_colors = ['black', 'yellow', 'green', 'magenta',
'black',
'burlywood',
'chartreuse',
'blue',
'red'
]
histogram_properties = Histogram_properties()
histogram_properties.name = name_prefix + b_tag_bin
if category != 'central':
histogram_properties.name += '_' + category
histogram_properties.title = title
histogram_properties.x_axis_title = x_axis_title
histogram_properties.y_axis_title = y_axis_title
histogram_properties.x_limits = x_limits
histogram_properties.y_limits = y_limits
histogram_properties.y_max_scale = y_max_scale
histogram_properties.xerr = None
# workaround for rootpy issue #638
histogram_properties.emptybins = True
if b_tag_bin:
histogram_properties.additional_text = channel_latex[channel] + ', ' + b_tag_bins_latex[b_tag_bin]
else:
histogram_properties.additional_text = channel_latex[channel]
histogram_properties.legend_location = legend_location
histogram_properties.cms_logo_location = cms_logo_location
histogram_properties.preliminary = preliminary
histogram_properties.set_log_y = log_y
histogram_properties.legend_color = legend_color
if ratio_y_limits:
histogram_properties.ratio_y_limits = ratio_y_limits
if normalise_to_fit:
histogram_properties.mc_error = get_normalisation_error( normalisation )
histogram_properties.mc_errors_label = 'fit uncertainty'
else:
histogram_properties.mc_error = mc_uncertainty
histogram_properties.mc_errors_label = 'MC unc.'
# Actually draw histograms
make_data_mc_comparison_plot( histograms_to_draw, histogram_lables, histogram_colors,
histogram_properties, save_folder = output_folder,
show_ratio = False, normalise = normalise,
)
histogram_properties.name += '_with_ratio'
loc = histogram_properties.legend_location
# adjust legend location as it is relative to canvas!
histogram_properties.legend_location = ( loc[0], loc[1] + 0.05 )
make_data_mc_comparison_plot( histograms_to_draw, histogram_lables, histogram_colors,
histogram_properties, save_folder = output_folder,
show_ratio = True, normalise = normalise,
)