當前位置: 首頁>>代碼示例>>Python>>正文


Python Histogram_properties.legend_location方法代碼示例

本文整理匯總了Python中tools.plotting.Histogram_properties.legend_location方法的典型用法代碼示例。如果您正苦於以下問題:Python Histogram_properties.legend_location方法的具體用法?Python Histogram_properties.legend_location怎麽用?Python Histogram_properties.legend_location使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tools.plotting.Histogram_properties的用法示例。


在下文中一共展示了Histogram_properties.legend_location方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: plot_fit_results

# 需要導入模塊: from tools.plotting import Histogram_properties [as 別名]
# 或者: from tools.plotting.Histogram_properties import legend_location [as 別名]
def plot_fit_results(fit_results, initial_values, channel):
    global variable, output_folder

    title = electron_histogram_title if channel == "electron" else muon_histogram_title

    histogram_properties = Histogram_properties()
    histogram_properties.title = title

    histogram_properties.x_axis_title = variable + " [GeV]"
    histogram_properties.mc_error = 0.0
    histogram_properties.legend_location = "upper right"
    # we will need 4 histograms: TTJet, SingleTop, QCD, V+Jets
    for sample in ["TTJet", "SingleTop", "QCD", "V+Jets"]:
        histograms = {}
        # absolute eta measurement as baseline
        h_absolute_eta = None
        h_before = None
        histogram_properties.y_axis_title = "Fitted number of events for " + samples_latex[sample]

        for fit_var_input in fit_results.keys():
            latex_string = create_latex_string(fit_var_input)
            fit_data = fit_results[fit_var_input][sample]
            h = value_error_tuplelist_to_hist(fit_data, bin_edges[variable])
            if fit_var_input == "absolute_eta":
                h_absolute_eta = h
            elif fit_var_input == "before":
                h_before = h
            else:
                histograms[latex_string] = h
        graphs = spread_x(histograms.values(), bin_edges[variable])
        for key, graph in zip(histograms.keys(), graphs):
            histograms[key] = graph
        filename = sample.replace("+", "_") + "_fit_var_comparison_" + channel
        histogram_properties.name = filename
        histogram_properties.y_limits = 0, limit_range_y(h_absolute_eta)[1] * 1.3
        histogram_properties.x_limits = bin_edges[variable][0], bin_edges[variable][-1]

        h_initial_values = value_error_tuplelist_to_hist(initial_values[sample], bin_edges[variable])
        h_initial_values.Scale(closure_tests["simple"][sample])

        compare_measurements(
            models={
                fit_variables_latex["absolute_eta"]: h_absolute_eta,
                "initial values": h_initial_values,
                "before": h_before,
            },
            measurements=histograms,
            show_measurement_errors=True,
            histogram_properties=histogram_properties,
            save_folder=output_folder,
            save_as=["png", "pdf"],
        )
開發者ID:senkin,項目名稱:DailyPythonScripts,代碼行數:54,代碼來源:98b_fit_cross_checks.py

示例2: plot_fit_results

# 需要導入模塊: from tools.plotting import Histogram_properties [as 別名]
# 或者: from tools.plotting.Histogram_properties import legend_location [as 別名]
def plot_fit_results( fit_results, initial_values, channel ):
    global variable, output_folder
    
    title = electron_histogram_title if channel == 'electron' else muon_histogram_title
    
    
    histogram_properties = Histogram_properties()
    histogram_properties.title = title
    
    histogram_properties.x_axis_title = variable + ' [GeV]'
    histogram_properties.mc_error = 0.0
    histogram_properties.legend_location = 'upper right'
    # we will need 4 histograms: TTJet, SingleTop, QCD, V+Jets
    for sample in ['TTJet', 'SingleTop', 'QCD', 'V+Jets']:
        histograms = {}
        # absolute eta measurement as baseline
        h_absolute_eta = None
        h_before = None
        histogram_properties.y_axis_title = 'Fitted number of events for ' + samples_latex[sample]
        
        for fit_var_input in fit_results.keys():
            latex_string = create_latex_string( fit_var_input )
            fit_data = fit_results[fit_var_input][sample]
            h = value_error_tuplelist_to_hist( fit_data,
                                              bin_edges[variable] )
            if fit_var_input == 'absolute_eta':
                h_absolute_eta = h
            elif fit_var_input == 'before':
                h_before = h
            else:
                histograms[latex_string] = h
        graphs = spread_x( histograms.values(), bin_edges[variable] )
        for key, graph in zip( histograms.keys(), graphs ):
            histograms[key] = graph
        filename = sample.replace( '+', '_' ) + '_fit_var_comparison_' + channel
        histogram_properties.name = filename
        histogram_properties.y_limits = 0, limit_range_y( h_absolute_eta )[1] * 1.3
        histogram_properties.x_limits = bin_edges[variable][0], bin_edges[variable][-1]
        
        h_initial_values = value_error_tuplelist_to_hist( initial_values[sample],
                                                         bin_edges[variable] )
        h_initial_values.Scale(closure_tests['simple'][sample])
        
        compare_measurements( models = {fit_variables_latex['absolute_eta']:h_absolute_eta,
                                        'initial values' : h_initial_values,
                                        'before': h_before},
                             measurements = histograms,
                             show_measurement_errors = True,
                             histogram_properties = histogram_properties,
                             save_folder = output_folder,
                             save_as = ['png', 'pdf'] )
開發者ID:Shloffi,項目名稱:DailyPythonScripts,代碼行數:53,代碼來源:98b_fit_cross_checks.py

示例3: compare_combine_before_after_unfolding_uncertainties

# 需要導入模塊: from tools.plotting import Histogram_properties [as 別名]
# 或者: from tools.plotting.Histogram_properties import legend_location [as 別名]
def compare_combine_before_after_unfolding_uncertainties():
    file_template = 'data/normalisation/background_subtraction/13TeV/'
    file_template += '{variable}/VisiblePS/central/'
    file_template += 'unfolded_normalisation_{channel}_RooUnfoldSvd.txt'

    variables = ['MET', 'HT', 'ST', 'NJets',
                 'lepton_pt', 'abs_lepton_eta', 'WPT']
#     variables = ['ST']
    for variable in variables:
        beforeUnfolding = file_template.format(
            variable=variable, channel='combinedBeforeUnfolding')
        afterUnfolding = file_template.format(
            variable=variable, channel='combined')
        data = read_data_from_JSON(beforeUnfolding)
        before_unfolding = data['TTJet_measured']
        beforeUnfolding_data = data['TTJet_unfolded']
        afterUnfolding_data = read_data_from_JSON(afterUnfolding)['TTJet_unfolded']

        before_unfolding = [e / v * 100 for v, e in before_unfolding]
        beforeUnfolding_data = [e / v * 100 for v, e in beforeUnfolding_data]
        afterUnfolding_data = [e / v * 100 for v, e in afterUnfolding_data]

        h_beforeUnfolding = value_tuplelist_to_hist(
            beforeUnfolding_data, bin_edges_vis[variable])
        h_afterUnfolding = value_tuplelist_to_hist(
            afterUnfolding_data, bin_edges_vis[variable])
        h_before_unfolding = value_tuplelist_to_hist(
            before_unfolding, bin_edges_vis[variable])

        properties = Histogram_properties()
        properties.name = 'compare_combine_before_after_unfolding_uncertainties_{0}'.format(
            variable)
        properties.title = 'Comparison of unfolding uncertainties'
        properties.path = 'plots'
        properties.has_ratio = False
        properties.xerr = True
        properties.x_limits = (
            bin_edges_vis[variable][0], bin_edges_vis[variable][-1])
        properties.x_axis_title = variables_latex[variable]
        properties.y_axis_title = 'relative uncertainty (\\%)'
        properties.legend_location = (0.98, 0.95)

        histograms = {'Combine before unfolding': h_beforeUnfolding, 'Combine after unfolding': h_afterUnfolding,
                      # 'before unfolding': h_before_unfolding
                      }
        plot = Plot(histograms, properties)
        plot.draw_method = 'errorbar'
        compare_histograms(plot)
開發者ID:RemKamal,項目名稱:DailyPythonScripts,代碼行數:50,代碼來源:approval_conditions.py

示例4: compare_unfolding_uncertainties

# 需要導入模塊: from tools.plotting import Histogram_properties [as 別名]
# 或者: from tools.plotting.Histogram_properties import legend_location [as 別名]
def compare_unfolding_uncertainties():
    file_template = '/hdfs/TopQuarkGroup/run2/dpsData/'
    file_template += 'data/normalisation/background_subtraction/13TeV/'
    file_template += '{variable}/VisiblePS/central/'
    file_template += 'unfolded_normalisation_combined_RooUnfold{method}.txt'

    variables = ['MET', 'HT', 'ST', 'NJets',
                 'lepton_pt', 'abs_lepton_eta', 'WPT']
#     variables = ['ST']
    for variable in variables:
        svd = file_template.format(
            variable=variable, method='Svd')
        bayes = file_template.format(
            variable=variable, method='Bayes')
        data = read_data_from_JSON(svd)
        before_unfolding = data['TTJet_measured_withoutFakes']
        svd_data = data['TTJet_unfolded']
        bayes_data = read_data_from_JSON(bayes)['TTJet_unfolded']

        before_unfolding = [e / v * 100 for v, e in before_unfolding]
        svd_data = [e / v * 100 for v, e in svd_data]
        bayes_data = [e / v * 100 for v, e in bayes_data]

        h_svd = value_tuplelist_to_hist(
            svd_data, bin_edges_vis[variable])
        h_bayes = value_tuplelist_to_hist(
            bayes_data, bin_edges_vis[variable])
        h_before_unfolding = value_tuplelist_to_hist(
            before_unfolding, bin_edges_vis[variable])

        properties = Histogram_properties()
        properties.name = 'compare_unfolding_uncertainties_{0}'.format(
            variable)
        properties.title = 'Comparison of unfolding uncertainties'
        properties.path = 'plots'
        properties.has_ratio = False
        properties.xerr = True
        properties.x_limits = (
            bin_edges_vis[variable][0], bin_edges_vis[variable][-1])
        properties.x_axis_title = variables_latex[variable]
        properties.y_axis_title = 'relative uncertainty (\\%)'
        properties.legend_location = (0.98, 0.95)

        histograms = {'SVD': h_svd, 'Bayes': h_bayes,
                      'before unfolding': h_before_unfolding}
        plot = Plot(histograms, properties)
        plot.draw_method = 'errorbar'
        compare_histograms(plot)
開發者ID:RemKamal,項目名稱:DailyPythonScripts,代碼行數:50,代碼來源:approval_conditions.py

示例5: make_ttbarReco_plot

# 需要導入模塊: from tools.plotting import Histogram_properties [as 別名]
# 或者: from tools.plotting.Histogram_properties import legend_location [as 別名]
def make_ttbarReco_plot( channel, x_axis_title, y_axis_title,
              signal_region_tree,
              control_region_tree,
              branchName,
              name_prefix, x_limits, nBins,
              use_qcd_data_region = False,
              y_limits = [],
              y_max_scale = 1.2,
              rebin = 1,
              legend_location = ( 0.98, 0.78 ), cms_logo_location = 'right',
              log_y = False,
              legend_color = False,
              ratio_y_limits = [0.3, 1.7],
              normalise = False,
              ):
    global output_folder, measurement_config, category, normalise_to_fit
    global preliminary, norm_variable, sum_bins, b_tag_bin, histogram_files

    # Input files, normalisations, tree/region names
    qcd_data_region = ''
    title = title_template % ( measurement_config.new_luminosity / 1000., measurement_config.centre_of_mass_energy )
    normalisation = None
    if channel == 'electron':
        histogram_files['data'] = measurement_config.data_file_electron_trees
        histogram_files['QCD'] = measurement_config.electron_QCD_MC_category_templates_trees[category]
        if normalise_to_fit:
            normalisation = normalisations_electron[norm_variable]
        if use_qcd_data_region:
            qcd_data_region = 'QCDConversions'
    if channel == 'muon':
        histogram_files['data'] = measurement_config.data_file_muon_trees
        histogram_files['QCD'] = measurement_config.muon_QCD_MC_category_templates_trees[category]
        if normalise_to_fit:
            normalisation = normalisations_muon[norm_variable]
        if use_qcd_data_region:
            qcd_data_region = 'QCD non iso mu+jets ge3j'

    histograms = get_histograms_from_trees( trees = [signal_region_tree, control_region_tree], branch = branchName, weightBranch = '1', files = histogram_files, nBins = nBins, xMin = x_limits[0], xMax = x_limits[-1] )

    selection = 'SolutionCategory == 0'
    histogramsNoSolution = get_histograms_from_trees( trees = [signal_region_tree], branch = branchName, weightBranch = '1', selection = selection, files = histogram_files, nBins = nBins, xMin = x_limits[0], xMax = x_limits[-1] )

    selection = 'SolutionCategory == 1'
    histogramsCorrect = get_histograms_from_trees( trees = [signal_region_tree], branch = branchName, weightBranch = '1', selection = selection, files = histogram_files, nBins = nBins, xMin = x_limits[0], xMax = x_limits[-1] )

    selection = 'SolutionCategory == 2'
    histogramsNotSL = get_histograms_from_trees( trees = [signal_region_tree], branch = branchName, weightBranch = '1', selection = selection, files = histogram_files, nBins = nBins, xMin = x_limits[0], xMax = x_limits[-1] )

    selection = 'SolutionCategory == 3'
    histogramsNotReco = get_histograms_from_trees( trees = [signal_region_tree], branch = branchName, weightBranch = '1', selection = selection, files = histogram_files, nBins = nBins, xMin = x_limits[0], xMax = x_limits[-1] )

    selection = 'SolutionCategory > 3'
    histogramsWrong = get_histograms_from_trees( trees = [signal_region_tree], branch = branchName, weightBranch = '1', selection = selection, files = histogram_files, nBins = nBins, xMin = x_limits[0], xMax = x_limits[-1] )

    # Split histograms up into signal/control (?)
    signal_region_hists = {}
    inclusive_control_region_hists = {}
    for sample in histograms.keys():
        signal_region_hists[sample] = histograms[sample][signal_region_tree]
        if use_qcd_data_region:
            inclusive_control_region_hists[sample] = histograms[sample][control_region_tree]

    prepare_histograms( histograms, rebin = 1, scale_factor = measurement_config.luminosity_scale )
    prepare_histograms( histogramsNoSolution, rebin = 1, scale_factor = measurement_config.luminosity_scale )
    prepare_histograms( histogramsCorrect, rebin = 1, scale_factor = measurement_config.luminosity_scale )
    prepare_histograms( histogramsNotSL, rebin = 1, scale_factor = measurement_config.luminosity_scale )
    prepare_histograms( histogramsNotReco, rebin = 1, scale_factor = measurement_config.luminosity_scale )
    prepare_histograms( histogramsWrong, rebin = 1, scale_factor = measurement_config.luminosity_scale )

    qcd_from_data = signal_region_hists['QCD']

    # Which histograms to draw, and properties
    histograms_to_draw = [signal_region_hists['data'], qcd_from_data,
                          signal_region_hists['V+Jets'],
                          signal_region_hists['SingleTop'],
                          histogramsNoSolution['TTJet'][signal_region_tree],
                          histogramsNotSL['TTJet'][signal_region_tree],
                          histogramsNotReco['TTJet'][signal_region_tree],
                          histogramsWrong['TTJet'][signal_region_tree],
                          histogramsCorrect['TTJet'][signal_region_tree]
                          ]
    histogram_lables = ['data', 'QCD', 'V+Jets', 'Single-Top', 
                        samples_latex['TTJet'] + ' - no solution',
                        samples_latex['TTJet'] + ' - not SL',
                        samples_latex['TTJet'] + ' - not reconstructible',
                        samples_latex['TTJet'] + ' - wrong reco',
                        samples_latex['TTJet'] + ' - correct',
                        ]
    histogram_colors = ['black', 'yellow', 'green', 'magenta',
                        'black',
                        'burlywood',
                        'chartreuse',
                        'blue',
                        'red'
                        ]

    histogram_properties = Histogram_properties()
    histogram_properties.name = name_prefix + b_tag_bin
    if category != 'central':
        histogram_properties.name += '_' + category
#.........這裏部分代碼省略.........
開發者ID:snehashish3001,項目名稱:DailyPythonScripts,代碼行數:103,代碼來源:make_ttbarRecoPlots.py

示例6: make_plot

# 需要導入模塊: from tools.plotting import Histogram_properties [as 別名]
# 或者: from tools.plotting.Histogram_properties import legend_location [as 別名]
def make_plot( channel, x_axis_title, y_axis_title,
              signal_region_tree,
              control_region_tree,
              branchName,
              name_prefix, x_limits, nBins,
              use_qcd_data_region = False,
              compare_qcd_signal_with_data_control = False,
              y_limits = [],
              y_max_scale = 1.3,
              rebin = 1,
              legend_location = ( 0.98, 0.78 ), cms_logo_location = 'right',
              log_y = False,
              legend_color = False,
              ratio_y_limits = [0.3, 2.5],
              normalise = False,
              ):
    global output_folder, measurement_config, category, normalise_to_fit
    global preliminary, norm_variable, sum_bins, b_tag_bin, histogram_files

    controlToCompare = []
    if 'electron' in channel :
        controlToCompare =  ['QCDConversions', 'QCD non iso e+jets']
    elif 'muon' in channel :
        controlToCompare =  ['QCD iso > 0.3', 'QCD 0.12 < iso <= 0.3']

    histogramsToCompare = {}
    for qcd_data_region in controlToCompare:
        print 'Doing ',qcd_data_region
        # Input files, normalisations, tree/region names
        title = title_template % ( measurement_config.new_luminosity, measurement_config.centre_of_mass_energy )
        normalisation = None
        weightBranchSignalRegion = 'EventWeight'
        if 'electron' in channel:
            histogram_files['data'] = measurement_config.data_file_electron_trees
            histogram_files['QCD'] = measurement_config.electron_QCD_MC_category_templates_trees[category]
            if normalise_to_fit:
                normalisation = normalisations_electron[norm_variable]
            # if use_qcd_data_region:
            #     qcd_data_region = 'QCDConversions'
            #     # qcd_data_region = 'QCD non iso e+jets'
            if not 'QCD' in channel and not 'NPU' in branchName:
                weightBranchSignalRegion += ' * ElectronEfficiencyCorrection'
        if 'muon' in channel:
            histogram_files['data'] = measurement_config.data_file_muon_trees
            histogram_files['QCD'] = measurement_config.muon_QCD_MC_category_templates_trees[category]
            if normalise_to_fit:
                normalisation = normalisations_muon[norm_variable]
            # if use_qcd_data_region:
            #     qcd_data_region = 'QCD iso > 0.3'
            if not 'QCD' in channel and not 'NPU' in branchName:
                weightBranchSignalRegion += ' * MuonEfficiencyCorrection'

        if not "_NPUNoWeight" in name_prefix:
            weightBranchSignalRegion += ' * PUWeight'

        if not "_NBJetsNoWeight" in name_prefix:
            weightBranchSignalRegion += ' * BJetWeight'

        selection = '1'
        if branchName == 'abs(lepton_eta)' :
            selection = 'lepton_eta > -10'
        else:
            selection = '%s >= 0' % branchName
        # if 'QCDConversions' in signal_region_tree:
        #     selection += '&& isTightElectron'
        # print selection
        histograms = get_histograms_from_trees( trees = [signal_region_tree, control_region_tree], branch = branchName, weightBranch = weightBranchSignalRegion, files = histogram_files, nBins = nBins, xMin = x_limits[0], xMax = x_limits[-1], selection = selection )
        histograms_QCDControlRegion = None
        if use_qcd_data_region:
            qcd_control_region = signal_region_tree.replace( 'Ref selection', qcd_data_region )
            histograms_QCDControlRegion = get_histograms_from_trees( trees = [qcd_control_region], branch = branchName, weightBranch = 'EventWeight', files = histogram_files, nBins = nBins, xMin = x_limits[0], xMax = x_limits[-1], selection = selection )

        # Split histograms up into signal/control (?)
        signal_region_hists = {}
        control_region_hists = {}
        for sample in histograms.keys():
            signal_region_hists[sample] = histograms[sample][signal_region_tree]

            if compare_qcd_signal_with_data_control:
                if sample is 'data':
                    signal_region_hists[sample] = histograms[sample][control_region_tree]
                elif sample is 'QCD' :
                    signal_region_hists[sample] = histograms[sample][signal_region_tree]
                else:
                    del signal_region_hists[sample]

            if use_qcd_data_region:
                control_region_hists[sample] = histograms_QCDControlRegion[sample][qcd_control_region]

        # Prepare histograms
        if normalise_to_fit:
            # only scale signal region to fit (results are invalid for control region)
            prepare_histograms( signal_region_hists, rebin = rebin,
                                scale_factor = measurement_config.luminosity_scale,
                                normalisation = normalisation )
        elif normalise_to_data:
            totalMC = 0
            for sample in signal_region_hists:
                if sample is 'data' : continue
                totalMC += signal_region_hists[sample].Integral()
#.........這裏部分代碼省略.........
開發者ID:snehashish3001,項目名稱:DailyPythonScripts,代碼行數:103,代碼來源:compareQCDControlRegions.py

示例7: do_shape_check

# 需要導入模塊: from tools.plotting import Histogram_properties [as 別名]
# 或者: from tools.plotting.Histogram_properties import legend_location [as 別名]
def do_shape_check(channel, control_region_1, control_region_2, variable, normalisation, title, x_title, y_title, x_limits, y_limits,
                   name_region_1='conversions' , name_region_2='non-isolated electrons', name_region_3='fit results', rebin=1):
    global b_tag_bin
    # QCD shape comparison
    if channel == 'electron':
        histograms = get_histograms_from_files([control_region_1, control_region_2], histogram_files)
        
        region_1 = histograms[channel][control_region_1].Clone() - histograms['TTJet'][control_region_1].Clone() - histograms['V+Jets'][control_region_1].Clone() - histograms['SingleTop'][control_region_1].Clone()
        region_2 = histograms[channel][control_region_2].Clone() - histograms['TTJet'][control_region_2].Clone() - histograms['V+Jets'][control_region_2].Clone() - histograms['SingleTop'][control_region_2].Clone()
        
        region_1.Rebin(rebin)
        region_2.Rebin(rebin)
        
        histogram_properties = Histogram_properties()
        histogram_properties.name = 'QCD_control_region_comparison_' + channel + '_' + variable + '_' + b_tag_bin
        histogram_properties.title = title + ', ' + b_tag_bins_latex[b_tag_bin]
        histogram_properties.x_axis_title = x_title
        histogram_properties.y_axis_title = 'arbitrary units/(0.1)'
        histogram_properties.x_limits = x_limits
        histogram_properties.y_limits = y_limits[0]
        histogram_properties.mc_error = 0.0
        histogram_properties.legend_location = 'upper right'
        make_control_region_comparison(region_1, region_2,
                                       name_region_1=name_region_1, name_region_2=name_region_2,
                                       histogram_properties=histogram_properties, save_folder=output_folder)
        
        # QCD shape comparison to fit results
        histograms = get_histograms_from_files([control_region_1], histogram_files)
        
        region_1_tmp = histograms[channel][control_region_1].Clone() - histograms['TTJet'][control_region_1].Clone() - histograms['V+Jets'][control_region_1].Clone() - histograms['SingleTop'][control_region_1].Clone()
        region_1 = rebin_asymmetric(region_1_tmp, bin_edges[variable])
        
        fit_results_QCD = normalisation[variable]['QCD']
        region_2 = value_error_tuplelist_to_hist(fit_results_QCD, bin_edges_vis[variable])
        
        histogram_properties = Histogram_properties()
        histogram_properties.name = 'QCD_control_region_comparison_' + channel + '_' + variable + '_fits_with_conversions_' + b_tag_bin
        histogram_properties.title = title + ', ' + b_tag_bins_latex[b_tag_bin]
        histogram_properties.x_axis_title = x_title
        histogram_properties.y_axis_title = 'arbitrary units/(0.1)'
        histogram_properties.x_limits = x_limits
        histogram_properties.y_limits = y_limits[1]
        histogram_properties.mc_error = 0.0
        histogram_properties.legend_location = 'upper right'
        make_control_region_comparison(region_1, region_2,
                                       name_region_1=name_region_1, name_region_2=name_region_3,
                                       histogram_properties=histogram_properties, save_folder=output_folder)
    
    histograms = get_histograms_from_files([control_region_2], histogram_files)
    
    region_1_tmp = histograms[channel][control_region_2].Clone() - histograms['TTJet'][control_region_2].Clone() - histograms['V+Jets'][control_region_2].Clone() - histograms['SingleTop'][control_region_2].Clone()
    region_1 = rebin_asymmetric(region_1_tmp, bin_edges_vis[variable])    
    
    fit_results_QCD = normalisation[variable]['QCD']
    region_2 = value_error_tuplelist_to_hist(fit_results_QCD, bin_edges[variable])
    
    histogram_properties = Histogram_properties()
    histogram_properties.name = 'QCD_control_region_comparison_' + channel + '_' + variable + '_fits_with_noniso_' + b_tag_bin
    histogram_properties.title = title + ', ' + b_tag_bins_latex[b_tag_bin]
    histogram_properties.x_axis_title = x_title
    histogram_properties.y_axis_title = 'arbitrary units/(0.1)'
    histogram_properties.x_limits = x_limits
    histogram_properties.y_limits = y_limits[1]
    histogram_properties.mc_error = 0.0
    histogram_properties.legend_location = 'upper right'
    make_control_region_comparison(region_1, region_2,
                                   name_region_1=name_region_2, name_region_2=name_region_3,
                                   histogram_properties=histogram_properties, save_folder=output_folder)
開發者ID:snehashish3001,項目名稱:DailyPythonScripts,代碼行數:70,代碼來源:99_QCD_cross_checks.py

示例8: do_shape_check

# 需要導入模塊: from tools.plotting import Histogram_properties [as 別名]
# 或者: from tools.plotting.Histogram_properties import legend_location [as 別名]
def do_shape_check(
    channel,
    control_region_1,
    control_region_2,
    variable,
    normalisation,
    title,
    x_title,
    y_title,
    x_limits,
    y_limits,
    name_region_1="conversions",
    name_region_2="non-isolated electrons",
    name_region_3="fit results",
    rebin=1,
):
    global b_tag_bin
    # QCD shape comparison
    if channel == "electron":
        histograms = get_histograms_from_files([control_region_1, control_region_2], histogram_files)

        region_1 = (
            histograms[channel][control_region_1].Clone()
            - histograms["TTJet"][control_region_1].Clone()
            - histograms["V+Jets"][control_region_1].Clone()
            - histograms["SingleTop"][control_region_1].Clone()
        )
        region_2 = (
            histograms[channel][control_region_2].Clone()
            - histograms["TTJet"][control_region_2].Clone()
            - histograms["V+Jets"][control_region_2].Clone()
            - histograms["SingleTop"][control_region_2].Clone()
        )

        region_1.Rebin(rebin)
        region_2.Rebin(rebin)

        histogram_properties = Histogram_properties()
        histogram_properties.name = "QCD_control_region_comparison_" + channel + "_" + variable + "_" + b_tag_bin
        histogram_properties.title = title + ", " + b_tag_bins_latex[b_tag_bin]
        histogram_properties.x_axis_title = x_title
        histogram_properties.y_axis_title = "arbitrary units/(0.1)"
        histogram_properties.x_limits = x_limits
        histogram_properties.y_limits = y_limits[0]
        histogram_properties.mc_error = 0.0
        histogram_properties.legend_location = "upper right"
        make_control_region_comparison(
            region_1,
            region_2,
            name_region_1=name_region_1,
            name_region_2=name_region_2,
            histogram_properties=histogram_properties,
            save_folder=output_folder,
        )

        # QCD shape comparison to fit results
        histograms = get_histograms_from_files([control_region_1], histogram_files)

        region_1_tmp = (
            histograms[channel][control_region_1].Clone()
            - histograms["TTJet"][control_region_1].Clone()
            - histograms["V+Jets"][control_region_1].Clone()
            - histograms["SingleTop"][control_region_1].Clone()
        )
        region_1 = rebin_asymmetric(region_1_tmp, bin_edges[variable])

        fit_results_QCD = normalisation[variable]["QCD"]
        region_2 = value_error_tuplelist_to_hist(fit_results_QCD, bin_edges[variable])

        histogram_properties = Histogram_properties()
        histogram_properties.name = (
            "QCD_control_region_comparison_" + channel + "_" + variable + "_fits_with_conversions_" + b_tag_bin
        )
        histogram_properties.title = title + ", " + b_tag_bins_latex[b_tag_bin]
        histogram_properties.x_axis_title = x_title
        histogram_properties.y_axis_title = "arbitrary units/(0.1)"
        histogram_properties.x_limits = x_limits
        histogram_properties.y_limits = y_limits[1]
        histogram_properties.mc_error = 0.0
        histogram_properties.legend_location = "upper right"
        make_control_region_comparison(
            region_1,
            region_2,
            name_region_1=name_region_1,
            name_region_2=name_region_3,
            histogram_properties=histogram_properties,
            save_folder=output_folder,
        )

    histograms = get_histograms_from_files([control_region_2], histogram_files)

    region_1_tmp = (
        histograms[channel][control_region_2].Clone()
        - histograms["TTJet"][control_region_2].Clone()
        - histograms["V+Jets"][control_region_2].Clone()
        - histograms["SingleTop"][control_region_2].Clone()
    )
    region_1 = rebin_asymmetric(region_1_tmp, bin_edges[variable])

    fit_results_QCD = normalisation[variable]["QCD"]
#.........這裏部分代碼省略.........
開發者ID:senkin,項目名稱:DailyPythonScripts,代碼行數:103,代碼來源:99_QCD_cross_checks.py

示例9: debug_last_bin

# 需要導入模塊: from tools.plotting import Histogram_properties [as 別名]
# 或者: from tools.plotting.Histogram_properties import legend_location [as 別名]
def debug_last_bin():
    '''
        For debugging why the last bin in the problematic variables deviates a
        lot in _one_ of the channels only.
    '''
    file_template = '/hdfs/TopQuarkGroup/run2/dpsData/'
    file_template += 'data/normalisation/background_subtraction/13TeV/'
    file_template += '{variable}/VisiblePS/central/'
    file_template += 'normalised_xsection_{channel}_RooUnfoldSvd{suffix}.txt'
    problematic_variables = ['HT', 'MET', 'NJets', 'lepton_pt']

    for variable in problematic_variables:
        results = {}
        Result = namedtuple(
            'Result', ['before_unfolding', 'after_unfolding', 'model'])
        for channel in ['electron', 'muon', 'combined']:
            input_file_data = file_template.format(
                variable=variable,
                channel=channel,
                suffix='_with_errors',
            )
            input_file_model = file_template.format(
                variable=variable,
                channel=channel,
                suffix='',
            )
            data = read_data_from_JSON(input_file_data)
            data_model = read_data_from_JSON(input_file_model)
            before_unfolding = data['TTJet_measured_withoutFakes']
            after_unfolding = data['TTJet_unfolded']

            model = data_model['powhegPythia8']

            # only use the last bin
            h_before_unfolding = value_errors_tuplelist_to_graph(
                [before_unfolding[-1]], bin_edges_vis[variable][-2:])
            h_after_unfolding = value_errors_tuplelist_to_graph(
                [after_unfolding[-1]], bin_edges_vis[variable][-2:])
            h_model = value_error_tuplelist_to_hist(
                [model[-1]], bin_edges_vis[variable][-2:])

            r = Result(before_unfolding, after_unfolding, model)
            h = Result(h_before_unfolding, h_after_unfolding, h_model)
            results[channel] = (r, h)

        models = {'POWHEG+PYTHIA': results['combined'][1].model}
        h_unfolded = [results[channel][1].after_unfolding for channel in [
            'electron', 'muon', 'combined']]
        tmp_hists = spread_x(h_unfolded, bin_edges_vis[variable][-2:])
        measurements = {}
        for channel, hist in zip(['electron', 'muon', 'combined'], tmp_hists):
            value = results[channel][0].after_unfolding[-1][0]
            error = results[channel][0].after_unfolding[-1][1]
            label = '{c_label} ({value:1.2g} $\pm$ {error:1.2g})'.format(
                    c_label=channel,
                    value=value,
                    error=error,
            )
            measurements[label] = hist

        properties = Histogram_properties()
        properties.name = 'normalised_xsection_compare_channels_{0}_{1}_last_bin'.format(
            variable, channel)
        properties.title = 'Comparison of channels'
        properties.path = 'plots'
        properties.has_ratio = True
        properties.xerr = False
        properties.x_limits = (
            bin_edges_vis[variable][-2], bin_edges_vis[variable][-1])
        properties.x_axis_title = variables_latex[variable]
        properties.y_axis_title = r'$\frac{1}{\sigma}  \frac{d\sigma}{d' + \
            variables_latex[variable] + '}$'
        properties.legend_location = (0.95, 0.40)
        if variable == 'NJets':
            properties.legend_location = (0.97, 0.80)
        properties.formats = ['png']

        compare_measurements(models=models, measurements=measurements, show_measurement_errors=True,
                             histogram_properties=properties, save_folder='plots/', save_as=properties.formats)
開發者ID:RemKamal,項目名稱:DailyPythonScripts,代碼行數:81,代碼來源:approval_conditions.py

示例10: make_correlation_plot_from_file

# 需要導入模塊: from tools.plotting import Histogram_properties [as 別名]
# 或者: from tools.plotting.Histogram_properties import legend_location [as 別名]
def make_correlation_plot_from_file( channel, variable, fit_variables, CoM, title, x_title, y_title, x_limits, y_limits, rebin = 1, save_folder = 'plots/fitchecks/', save_as = ['pdf', 'png'] ):
# global b_tag_bin
    parameters = ["TTJet", "SingleTop", "V+Jets", "QCD"]
    parameters_latex = []
    for template in parameters:
        parameters_latex.append(samples_latex[template])
        
    input_file = open( "logs/01_%s_fit_%dTeV_%s.log" % ( variable, CoM, fit_variables ), "r" )
    # cycle through the lines in the file
    for line_number, line in enumerate( input_file ):
        # for now, only make plots for the fits for the central measurement
        if "central" in line:
            # matrix we want begins 11 lines below the line with the measurement ("central")
            line_number = line_number + 11
            break
    input_file.close()
    
    #Note: For some reason, the fit outputs the correlation matrix with the templates in the following order:
    #parameter1: QCD
    #parameter2: SingleTop
    #parameter3: TTJet
    #parameter4: V+Jets
        
    for variable_bin in variable_bins_ROOT[variable]:
        weights = {}
        if channel == 'electron':
            #formula to calculate the number of lines below "central" to access in each loop
            number_of_lines_down = (variable_bins_ROOT[variable].index( variable_bin ) * 12)

            #Get QCD correlations
            matrix_line = linecache.getline( "logs/01_%s_fit_%dTeV_%s.log" % ( variable, CoM, fit_variables ), line_number + number_of_lines_down )
            weights["QCD_QCD"] = matrix_line.split()[2]
            weights["QCD_SingleTop"] = matrix_line.split()[3]
            weights["QCD_TTJet"] = matrix_line.split()[4]
            weights["QCD_V+Jets"] = matrix_line.split()[5]

            #Get SingleTop correlations
            matrix_line = linecache.getline( "logs/01_%s_fit_%dTeV_%s.log" % ( variable, CoM, fit_variables ), line_number + number_of_lines_down + 1 )
            weights["SingleTop_QCD"] = matrix_line.split()[2]
            weights["SingleTop_SingleTop"] = matrix_line.split()[3]
            weights["SingleTop_TTJet"] = matrix_line.split()[4]
            weights["SingleTop_V+Jets"] = matrix_line.split()[5]

            #Get TTJet correlations
            matrix_line = linecache.getline( "logs/01_%s_fit_%dTeV_%s.log" % ( variable, CoM, fit_variables ), line_number + number_of_lines_down + 2 )
            weights["TTJet_QCD"] = matrix_line.split()[2]
            weights["TTJet_SingleTop"] = matrix_line.split()[3]            
            weights["TTJet_TTJet"] = matrix_line.split()[4]
            weights["TTJet_V+Jets"] = matrix_line.split()[5]

            #Get V+Jets correlations
            matrix_line = linecache.getline( "logs/01_%s_fit_%dTeV_%s.log" % ( variable, CoM, fit_variables ), line_number + number_of_lines_down + 3 )
            weights["V+Jets_QCD"] = matrix_line.split()[2]
            weights["V+Jets_SingleTop"] = matrix_line.split()[3]
            weights["V+Jets_TTJet"] = matrix_line.split()[4]
            weights["V+Jets_V+Jets"] = matrix_line.split()[5]

        if channel == 'muon':
            #formula to calculate the number of lines below "central" to access in each bin loop
            number_of_lines_down =  ( len( variable_bins_ROOT [variable] ) * 12 ) + ( variable_bins_ROOT[variable].index( variable_bin ) * 12 )
            
            #Get QCD correlations
            matrix_line = linecache.getline( "logs/01_%s_fit_%dTeV_%s.log" % ( variable, CoM, fit_variables ), line_number + number_of_lines_down )
            weights["QCD_QCD"] = matrix_line.split()[2]
            weights["QCD_SingleTop"] = matrix_line.split()[3]
            weights["QCD_TTJet"] = matrix_line.split()[4]
            weights["QCD_V+Jets"] = matrix_line.split()[5]

            #Get SingleTop correlations
            matrix_line = linecache.getline( "logs/01_%s_fit_%dTeV_%s.log" % ( variable, CoM, fit_variables ), line_number + number_of_lines_down + 1 )
            weights["SingleTop_QCD"] = matrix_line.split()[2]
            weights["SingleTop_SingleTop"] = matrix_line.split()[3]
            weights["SingleTop_TTJet"] = matrix_line.split()[4]
            weights["SingleTop_V+Jets"] = matrix_line.split()[5]

            #Get TTJet correlations
            matrix_line = linecache.getline( "logs/01_%s_fit_%dTeV_%s.log" % ( variable, CoM, fit_variables ), line_number + number_of_lines_down + 2 )
            weights["TTJet_QCD"] = matrix_line.split()[2]
            weights["TTJet_SingleTop"] = matrix_line.split()[3]
            weights["TTJet_TTJet"] = matrix_line.split()[4]
            weights["TTJet_V+Jets"] = matrix_line.split()[5]
            
            #Get V+Jets correlations
            matrix_line = linecache.getline( "logs/01_%s_fit_%dTeV_%s.log" % ( variable, CoM, fit_variables ), line_number + number_of_lines_down + 3 )
            weights["V+Jets_QCD"] = matrix_line.split()[2]
            weights["V+Jets_SingleTop"] = matrix_line.split()[3]
            weights["V+Jets_TTJet"] = matrix_line.split()[4]
            weights["V+Jets_V+Jets"] = matrix_line.split()[5]

        #Create histogram
        histogram_properties = Histogram_properties()
        histogram_properties.title = title
        histogram_properties.name = 'Correlations_' + channel + '_' + variable + '_' + variable_bin
        histogram_properties.y_axis_title = y_title
        histogram_properties.x_axis_title = x_title
        histogram_properties.y_limits = y_limits
        histogram_properties.x_limits = x_limits
        histogram_properties.mc_error = 0.0
        histogram_properties.legend_location = 'upper right'

#.........這裏部分代碼省略.........
開發者ID:RemKamal,項目名稱:DailyPythonScripts,代碼行數:103,代碼來源:98_fit_cross_checks.py


注:本文中的tools.plotting.Histogram_properties.legend_location方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。