本文整理匯總了Python中tensorflow.python.debug.stepper.NodeStepper.remove_override方法的典型用法代碼示例。如果您正苦於以下問題:Python NodeStepper.remove_override方法的具體用法?Python NodeStepper.remove_override怎麽用?Python NodeStepper.remove_override使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.debug.stepper.NodeStepper
的用法示例。
在下文中一共展示了NodeStepper.remove_override方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testRemoveNonexistentOverrideValue
# 需要導入模塊: from tensorflow.python.debug.stepper import NodeStepper [as 別名]
# 或者: from tensorflow.python.debug.stepper.NodeStepper import remove_override [as 別名]
def testRemoveNonexistentOverrideValue(self):
stepper = NodeStepper(self.sess, self.e)
self.assertEqual([], stepper.override_names())
with self.assertRaisesRegexp(
ValueError, "No overriding value exists for tensor \"c:0\""):
stepper.remove_override("c:0")
示例2: testRemoveOverrideValue
# 需要導入模塊: from tensorflow.python.debug.stepper import NodeStepper [as 別名]
# 或者: from tensorflow.python.debug.stepper.NodeStepper import remove_override [as 別名]
def testRemoveOverrideValue(self):
stepper = NodeStepper(self.sess, self.e)
result = stepper.cont(self.c)
self.assertAllClose(6.0, result)
self.assertEqual({}, stepper.last_feed_types())
# The previous cont() step should have generated a cached tensor handle.
self.assertEqual(["c:0"], stepper.handle_names())
self.assertSetEqual({"c"}, stepper.handle_node_names())
# Override c:0.
stepper.override_tensor("c:0", 7.0)
# The overriding should have invalidated the tensor handle.
self.assertEqual([], stepper.handle_names())
self.assertSetEqual(set(), stepper.handle_node_names())
self.assertEqual(["c:0"], stepper.override_names())
result = stepper.cont(self.e)
self.assertAllClose(28.0, result) # Should reflect the overriding value.
self.assertEqual({
"c:0": NodeStepper.FEED_TYPE_OVERRIDE
}, stepper.last_feed_types())
# The handle to tensor e:0 should have been cached, even though its
# transitive closure contains an override.
self.assertIn("e:0", stepper.handle_names())
self.assertSetEqual({"e"}, stepper.handle_node_names())
# Remove the override.
stepper.remove_override("c:0")
# c:0 should not be in the overrides anymore.
self.assertEqual([], stepper.override_names())
# Removing the override should have invalidated the tensor handle for c.
self.assertNotIn("e:0", stepper.handle_names())
self.assertNotIn("e", stepper.handle_node_names())
# Should reflect the non-overriding value.
self.assertAllClose(24.0, stepper.cont(self.e))
# This time, the handle to tensor e:0 should have been cached again, even
# thought its transitive closure contains an override.
self.assertIn("e:0", stepper.handle_names())
self.assertIn("e", stepper.handle_node_names())
# Calling cont(self.e) again should have used the tensor handle to e:0.
self.assertAllClose(24.0, stepper.cont(self.e))
self.assertEqual({
"e:0": NodeStepper.FEED_TYPE_HANDLE
}, stepper.last_feed_types())
示例3: testOverrideThenContToUpdate
# 需要導入模塊: from tensorflow.python.debug.stepper import NodeStepper [as 別名]
# 或者: from tensorflow.python.debug.stepper.NodeStepper import remove_override [as 別名]
def testOverrideThenContToUpdate(self):
"""Test cont() to update nodes after overriding tensor values."""
stepper = NodeStepper(self.sess, "optim")
result = stepper.cont("d:0")
self.assertAllClose(2.0, result)
self.assertEqual({}, stepper.last_feed_types())
self.assertEqual(set(), stepper.dirty_variables())
self.assertEqual(["d:0"], stepper.handle_names())
# Override the value from 1.0 to 10.0.
stepper.override_tensor("a/read:0", 10.0)
self.assertEqual(["a/read:0"], stepper.override_names())
result = stepper.cont("optim/update_c/ApplyGradientDescent",
restore_variable_values=True)
self.assertIsNone(result)
# The last cont() call should have not used the tensor handle to d:0,
# because the transitive closure of d:0 contains an override tensor.
self.assertEqual({
"a/read:0": NodeStepper.FEED_TYPE_OVERRIDE
}, stepper.last_feed_types())
# The tensor handle to d:0 should have been removed due to the dirty
# transitive closure.
self.assertEqual([], stepper.handle_names())
# For this backprop on c, the overriding value of a/read:0 should have been
# used:
# 4.0 - learning_rate * a * b * b
# = 4.0 - 0.01 * 10.0 * 2.0 * 2.0 = 3.6.
self.assertAllClose(3.6, self.sess.run(self.c))
# Now remove the overriding value of a/read:0.
stepper.remove_override("a/read:0")
self.assertEqual([], stepper.override_names())
# Obtain the tensor handle to d:0 again.
result = stepper.cont("d:0")
self.assertAllClose(2.0, result)
self.assertEqual(["d:0"], stepper.handle_names())
# Then call update_c again, without restoring c.
result = stepper.cont(
"optim/update_c/ApplyGradientDescent", restore_variable_values=False)
self.assertIsNone(result)
# This time, the d:0 tensor handle should have been used, because its
# transitive closure is clean.
self.assertEqual({
"d:0": NodeStepper.FEED_TYPE_HANDLE
}, stepper.last_feed_types())
# For this backprop on c, the overriding value of a/read:0 should have been
# used:
# 3.6 - learning_rate * a * b * b
# = 3.6 - 0.01 * 1.0 * 2.0 * 2.0 = 3.56.
self.assertAllClose(3.56, self.sess.run(self.c))