當前位置: 首頁>>代碼示例>>Python>>正文


Python NodeStepper.dirty_variables方法代碼示例

本文整理匯總了Python中tensorflow.python.debug.stepper.NodeStepper.dirty_variables方法的典型用法代碼示例。如果您正苦於以下問題:Python NodeStepper.dirty_variables方法的具體用法?Python NodeStepper.dirty_variables怎麽用?Python NodeStepper.dirty_variables使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.debug.stepper.NodeStepper的用法示例。


在下文中一共展示了NodeStepper.dirty_variables方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: testContToUpdateA

# 需要導入模塊: from tensorflow.python.debug.stepper import NodeStepper [as 別名]
# 或者: from tensorflow.python.debug.stepper.NodeStepper import dirty_variables [as 別名]
  def testContToUpdateA(self):
    stepper = NodeStepper(self.sess, "optim")

    result = stepper.cont("a:0")
    self.assertAllClose(1.0, result)
    self.assertEqual({}, stepper.last_feed_types())

    result = stepper.cont("optim/learning_rate:0")
    self.assertAllClose(0.01, result)
    self.assertEqual({}, stepper.last_feed_types())

    # Before any cont calls on ApplyGradientDescent, there should be no "dirty"
    # variables.
    self.assertEqual(set(), stepper.dirty_variables())

    # First, all the two control inputs to optim.
    result = stepper.cont("optim/update_a/ApplyGradientDescent")

    # Now variable a should have been marked as dirty due to the update
    # by optim/update_a/ApplyGradientDescent.
    self.assertEqual({"a:0"}, stepper.dirty_variables())
    self.assertIsNone(result)
    self.assertEqual({
        "optim/learning_rate:0": NodeStepper.FEED_TYPE_HANDLE
    }, stepper.last_feed_types())

    # Check that Variable "a" has been updated properly, but "b", "c" and "d"
    # remain the same.
    # For backprop on Variable a:
    #   Because f = a * b * b * c, df / da = b * b * c.
    #   1.0 - learning_rate * b * b * c
    #     = 1.0 -  0.01 * 2.0 * 2.0 * 4.0 = 0.84.
    self.assertAllClose(0.84, self.sess.run(self.a))
    self.assertAllClose(2.0, self.sess.run(self.b))
    self.assertAllClose(4.0, self.sess.run(self.c))
開發者ID:brchiu,項目名稱:tensorflow,代碼行數:37,代碼來源:stepper_test.py

示例2: testSelectiveHandleUsageDependingOnTransitiveCleanliness

# 需要導入模塊: from tensorflow.python.debug.stepper import NodeStepper [as 別名]
# 或者: from tensorflow.python.debug.stepper.NodeStepper import dirty_variables [as 別名]
  def testSelectiveHandleUsageDependingOnTransitiveCleanliness(self):
    """Test tensor handlers are using only during clean transitive closure.

    "clean" means no Variables have been updated by preceding cont() calls.
    """

    stepper = NodeStepper(self.sess, "optim")

    # First, call cont() on the two tensors on the intermediate level: e and f.
    result = stepper.cont("d:0")
    self.assertAllClose(2.0, result)
    self.assertEqual({}, stepper.last_feed_types())
    self.assertEqual(set(), stepper.dirty_variables())

    # The cont call above should have restored Variable "b".
    result = stepper.cont("e:0")
    self.assertAllClose(8.0, result)
    self.assertEqual({}, stepper.last_feed_types())
    self.assertEqual(set(), stepper.dirty_variables())

    # Now run update_a, so as to let Variable a be diry.
    result = stepper.cont("optim/update_a/ApplyGradientDescent",
                          restore_variable_values=True)
    self.assertIsNone(result)
    self.assertEqual({"a:0"}, stepper.dirty_variables())

    # Now, run update_b.
    result = stepper.cont("optim/update_b/ApplyGradientDescent",
                          restore_variable_values=True)
    self.assertIsNone(result)

    # The last cont() run should have use the handle of tensor e, but not the
    # handle of tensor d, because the transitive closure of e is clean, whereas
    # that of d is dirty due to the update to a in the previous cont() call.
    self.assertEqual({
        "e:0": NodeStepper.FEED_TYPE_HANDLE
    }, stepper.last_feed_types())

    # The result of the update_b should be identical to as if no other
    # update_* cont() calls have occurred before.
    self.assertAllClose(1.0, self.sess.run(self.a))
    self.assertAllClose(1.84, self.sess.run(self.b))
    self.assertAllClose(4.0, self.sess.run(self.c))
開發者ID:brchiu,項目名稱:tensorflow,代碼行數:45,代碼來源:stepper_test.py

示例3: testUpdateTwiceRestoreVariable

# 需要導入模塊: from tensorflow.python.debug.stepper import NodeStepper [as 別名]
# 或者: from tensorflow.python.debug.stepper.NodeStepper import dirty_variables [as 別名]
  def testUpdateTwiceRestoreVariable(self):
    stepper = NodeStepper(self.sess, "optim")

    result = stepper.cont("optim/update_a/ApplyGradientDescent",
                          restore_variable_values=True)
    self.assertIsNone(result)
    self.assertEqual({"a:0"}, stepper.dirty_variables())

    result = stepper.cont("optim/update_b/ApplyGradientDescent",
                          restore_variable_values=True)
    self.assertIsNone(result)
    # Variables a and c should have been restored and hence no longer dirty.
    # Variable b should have been marked as dirty.
    self.assertEqual({"b:0"}, stepper.dirty_variables())

    # The result of the update should be identitcal to as if only update_b is
    # run.
    self.assertAllClose(1.0, self.sess.run(self.a))
    self.assertAllClose(1.84, self.sess.run(self.b))
    self.assertAllClose(4.0, self.sess.run(self.c))
開發者ID:brchiu,項目名稱:tensorflow,代碼行數:22,代碼來源:stepper_test.py

示例4: testContToUpdateB

# 需要導入模塊: from tensorflow.python.debug.stepper import NodeStepper [as 別名]
# 或者: from tensorflow.python.debug.stepper.NodeStepper import dirty_variables [as 別名]
  def testContToUpdateB(self):
    stepper = NodeStepper(self.sess, "optim")

    result = stepper.cont("optim/update_b/ApplyGradientDescent")
    self.assertIsNone(result)
    self.assertEqual(set(["b:0"]), stepper.dirty_variables())

    # For backprop on Variable b:
    #   Because f = a * b * b * c, df / da = 2 * a * b * c.
    #   2.0 - learning_rate * 2 * a * b * c
    #     = 2.0 - 0.01 * 2 * 1.0 * 2.0 * 4.0 = 1.84
    self.assertAllClose(1.0, self.sess.run(self.a))
    self.assertAllClose(1.84, self.sess.run(self.b))
    self.assertAllClose(4.0, self.sess.run(self.c))
開發者ID:brchiu,項目名稱:tensorflow,代碼行數:16,代碼來源:stepper_test.py

示例5: testContAfterUpdateWithoutRestoringVariableValue

# 需要導入模塊: from tensorflow.python.debug.stepper import NodeStepper [as 別名]
# 或者: from tensorflow.python.debug.stepper.NodeStepper import dirty_variables [as 別名]
  def testContAfterUpdateWithoutRestoringVariableValue(self):
    stepper = NodeStepper(self.sess, "optim")

    # First, update Variable a from 1.0 to 0.84.
    result = stepper.cont("optim/update_a/ApplyGradientDescent",
                          restore_variable_values=True)
    self.assertIsNone(result)
    self.assertEqual(set(["a:0"]), stepper.dirty_variables())
    self.assertAllClose(0.84, self.sess.run(self.a))
    self.assertAllClose(2.0, self.sess.run(self.b))
    self.assertAllClose(4.0, self.sess.run(self.c))

    # Second, update Variable b without the default restore_variable_values.
    result = stepper.cont(
        "optim/update_b/ApplyGradientDescent", restore_variable_values=False)
    self.assertIsNone(result)
    # For the backprop on Variable b under the updated value of a:
    #   2.0 - learning_rate * 2 * a' * b * c
    #     = 2.0 - 0.01 * 2 * 0.84 * 2.0 * 4.0 = 1.8656
    self.assertAllClose(0.84, self.sess.run(self.a))
    self.assertAllClose(1.8656, self.sess.run(self.b))
    self.assertAllClose(4.0, self.sess.run(self.c))
開發者ID:brchiu,項目名稱:tensorflow,代碼行數:24,代碼來源:stepper_test.py

示例6: testOverrideThenContToUpdate

# 需要導入模塊: from tensorflow.python.debug.stepper import NodeStepper [as 別名]
# 或者: from tensorflow.python.debug.stepper.NodeStepper import dirty_variables [as 別名]
  def testOverrideThenContToUpdate(self):
    """Test cont() to update nodes after overriding tensor values."""

    stepper = NodeStepper(self.sess, "optim")

    result = stepper.cont("d:0")
    self.assertAllClose(2.0, result)
    self.assertEqual({}, stepper.last_feed_types())
    self.assertEqual(set(), stepper.dirty_variables())
    self.assertEqual(["d:0"], stepper.handle_names())

    # Override the value from 1.0 to 10.0.
    stepper.override_tensor("a/read:0", 10.0)

    self.assertEqual(["a/read:0"], stepper.override_names())

    result = stepper.cont("optim/update_c/ApplyGradientDescent",
                          restore_variable_values=True)
    self.assertIsNone(result)

    # The last cont() call should have not used the tensor handle to d:0,
    # because the transitive closure of d:0 contains an override tensor.
    self.assertEqual({
        "a/read:0": NodeStepper.FEED_TYPE_OVERRIDE
    }, stepper.last_feed_types())

    # The tensor handle to d:0 should have been removed due to the dirty
    # transitive closure.
    self.assertEqual([], stepper.handle_names())

    # For this backprop on c, the overriding value of a/read:0 should have been
    # used:
    #   4.0 - learning_rate * a * b * b
    #     = 4.0 - 0.01 * 10.0 * 2.0 * 2.0 = 3.6.
    self.assertAllClose(3.6, self.sess.run(self.c))

    # Now remove the overriding value of a/read:0.
    stepper.remove_override("a/read:0")
    self.assertEqual([], stepper.override_names())

    # Obtain the tensor handle to d:0 again.
    result = stepper.cont("d:0")
    self.assertAllClose(2.0, result)
    self.assertEqual(["d:0"], stepper.handle_names())

    # Then call update_c again, without restoring c.
    result = stepper.cont(
        "optim/update_c/ApplyGradientDescent", restore_variable_values=False)
    self.assertIsNone(result)

    # This time, the d:0 tensor handle should have been used, because its
    # transitive closure is clean.
    self.assertEqual({
        "d:0": NodeStepper.FEED_TYPE_HANDLE
    }, stepper.last_feed_types())

    # For this backprop on c, the overriding value of a/read:0 should have been
    # used:
    #   3.6 - learning_rate * a * b * b
    #     = 3.6 - 0.01 * 1.0 * 2.0 * 2.0 = 3.56.
    self.assertAllClose(3.56, self.sess.run(self.c))
開發者ID:brchiu,項目名稱:tensorflow,代碼行數:63,代碼來源:stepper_test.py


注:本文中的tensorflow.python.debug.stepper.NodeStepper.dirty_variables方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。