本文整理匯總了Python中tensorflow.python.debug.stepper.NodeStepper類的典型用法代碼示例。如果您正苦於以下問題:Python NodeStepper類的具體用法?Python NodeStepper怎麽用?Python NodeStepper使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了NodeStepper類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testRemoveNonexistentOverrideValue
def testRemoveNonexistentOverrideValue(self):
stepper = NodeStepper(self.sess, self.e)
self.assertEqual([], stepper.override_names())
with self.assertRaisesRegexp(
ValueError, "No overriding value exists for tensor \"c:0\""):
stepper.remove_override("c:0")
示例2: testIsFeedableShouldGiveCorrectAnswers
def testIsFeedableShouldGiveCorrectAnswers(self):
stepper = NodeStepper(self.sess, self.e)
self.assertTrue(stepper.is_feedable("a/read:0"))
self.assertTrue(stepper.is_feedable("b/read:0"))
self.assertTrue(stepper.is_feedable("c:0"))
self.assertTrue(stepper.is_feedable("d:0"))
示例3: testIsFeedable
def testIsFeedable(self):
stepper = NodeStepper(self.sess, self.e)
self.assertTrue(stepper.is_feedable("a/read:0"))
self.assertTrue(stepper.is_feedable("b/read:0"))
self.assertTrue(stepper.is_feedable("c:0"))
self.assertTrue(stepper.is_feedable("d:0"))
示例4: testUsingNodesNotUsingIntermediateTensors
def testUsingNodesNotUsingIntermediateTensors(self):
stepper = NodeStepper(self.sess, self.e)
# There should be no handles before any cont() calls.
self.assertEqual([], stepper.handle_names())
# Before the cont() call, the stepper should not have access to the value
# of c:0.
with self.assertRaisesRegexp(
ValueError,
"This stepper instance does not have access to the value of tensor "
"\"c:0\""):
stepper.get_tensor_value("c:0")
# Using the node/tensor itself, instead of the name str, should work on
# cont().
result = stepper.cont(self.c)
self.assertAllClose(6.0, result)
self.assertEqual({}, stepper.last_feed_types())
self.assertEqual(["c:0"], stepper.handle_names())
# After the cont() call, the stepper should have access to the value of c:0
# via a tensor handle.
self.assertAllClose(6.0, stepper.get_tensor_value("c:0"))
result = stepper.cont(self.e)
self.assertAllClose(24.0, result)
self.assertEqual({
"c:0": NodeStepper.FEED_TYPE_HANDLE
}, stepper.last_feed_types())
示例5: testTransitiveClosureWithCrossLinksShouldHaveCorrectOrder
def testTransitiveClosureWithCrossLinksShouldHaveCorrectOrder(self):
stepper = NodeStepper(self.sess, "z:0")
sorted_nodes = stepper.sorted_nodes()
self.assertEqual(4, len(sorted_nodes))
self.assertLess(sorted_nodes.index("x"), sorted_nodes.index("x/read"))
self.assertLess(sorted_nodes.index("x"), sorted_nodes.index("y"))
self.assertLess(sorted_nodes.index("x"), sorted_nodes.index("z"))
self.assertLess(sorted_nodes.index("y"), sorted_nodes.index("z"))
示例6: testContWithPlaceholders
def testContWithPlaceholders(self):
stepper = NodeStepper(
self.sess,
self.y,
feed_dict={
self.ph0: [[1.0, 2.0], [-3.0, 5.0]],
self.ph1: [[-1.0], [0.5]]
})
self.assertEqual(4, len(stepper.sorted_nodes()))
self.assertSetEqual({"ph0:0", "ph1:0", "x:0", "y:0"},
set(stepper.closure_elements()))
result = stepper.cont(self.x)
self.assertAllClose([[0.0], [5.5]], result)
self.assertEqual({
"ph0:0": NodeStepper.FEED_TYPE_CLIENT,
"ph1:0": NodeStepper.FEED_TYPE_CLIENT,
}, stepper.last_feed_types())
self.assertEqual(["x:0"], stepper.handle_names())
self.assertSetEqual({"x"}, stepper.handle_node_names())
result = stepper.cont(self.y)
self.assertAllClose([[-1.0], [6.0]], result)
self.assertEqual({
"x:0": NodeStepper.FEED_TYPE_HANDLE,
"ph1:0": NodeStepper.FEED_TYPE_CLIENT,
}, stepper.last_feed_types())
示例7: testContToUpdateA
def testContToUpdateA(self):
stepper = NodeStepper(self.sess, "optim")
result = stepper.cont("a:0")
self.assertAllClose(1.0, result)
self.assertEqual({}, stepper.last_feed_types())
result = stepper.cont("optim/learning_rate:0")
self.assertAllClose(0.01, result)
self.assertEqual({}, stepper.last_feed_types())
# Before any cont calls on ApplyGradientDescent, there should be no "dirty"
# variables.
self.assertEqual(set(), stepper.dirty_variables())
# First, all the two control inputs to optim.
result = stepper.cont("optim/update_a/ApplyGradientDescent")
# Now variable a should have been marked as dirty due to the update
# by optim/update_a/ApplyGradientDescent.
self.assertEqual({"a:0"}, stepper.dirty_variables())
self.assertIsNone(result)
self.assertEqual({
"optim/learning_rate:0": NodeStepper.FEED_TYPE_HANDLE
}, stepper.last_feed_types())
# Check that Variable "a" has been updated properly, but "b", "c" and "d"
# remain the same.
# For backprop on Variable a:
# Because f = a * b * b * c, df / da = b * b * c.
# 1.0 - learning_rate * b * b * c
# = 1.0 - 0.01 * 2.0 * 2.0 * 4.0 = 0.84.
self.assertAllClose(0.84, self.sess.run(self.a))
self.assertAllClose(2.0, self.sess.run(self.b))
self.assertAllClose(4.0, self.sess.run(self.c))
示例8: testRestoreVariableValues
def testRestoreVariableValues(self):
"""Test restore_variable_values() restores the old values of variables."""
stepper = NodeStepper(self.sess, "optim")
stepper.cont(
"optim/update_b/ApplyGradientDescent", restore_variable_values=True)
self.assertAllClose(1.84, self.sess.run(self.b))
stepper.restore_variable_values()
self.assertAllClose(2.0, self.sess.run(self.b))
示例9: testAttemptToContToPlaceholder
def testAttemptToContToPlaceholder(self):
stepper = NodeStepper(
self.sess,
self.y,
feed_dict={
self.ph0: [[1.0, 2.0], [-3.0, 5.0]],
self.ph1: [[-1.0], [0.5]]
})
with self.assertRaisesRegexp(ValueError,
r"Should not call cont\(\) on a Placeholder"):
stepper.cont(self.ph0)
示例10: testIsPlaceholdersShouldGiveCorrectAnswers
def testIsPlaceholdersShouldGiveCorrectAnswers(self):
stepper = NodeStepper(self.sess, self.y)
self.assertTrue(stepper.is_placeholder(self.ph0.name))
self.assertTrue(stepper.is_placeholder(self.ph1.name))
self.assertFalse(stepper.is_placeholder(self.x.name))
self.assertFalse(stepper.is_placeholder(self.y.name))
with self.assertRaisesRegexp(ValueError,
"A is not in the transitive closure"):
self.assertFalse(stepper.is_placeholder("A"))
示例11: testAttemptToContToFetchNotInTransitiveClosure
def testAttemptToContToFetchNotInTransitiveClosure(self):
stepper = NodeStepper(self.sess, "e:0")
self.assertEqual(
["a:0", "b:0", "b/read:0", "a/read:0", "c:0", "d:0", "e:0"],
stepper.sorted_transitive_closure())
with self.assertRaisesRegexp(
ValueError,
"Target \"f:0\" is not in the transitive closure for the fetch of the "
"stepper: \"e:0\""):
stepper.cont("f:0")
示例12: testAttemptToContToPlaceholderWithTensorNameFeedKeysShouldWork
def testAttemptToContToPlaceholderWithTensorNameFeedKeysShouldWork(self):
ph0_feed = [[1.0, 2.0], [-3.0, 5.0]]
ph1_feed = [[-1.0], [0.5]]
stepper = NodeStepper(
self.sess,
self.y,
feed_dict={
self.ph0.name: ph0_feed,
self.ph1.name: ph1_feed,
})
self.assertAllClose(ph0_feed, stepper.cont(self.ph0))
self.assertEqual({
self.ph0.name: NodeStepper.FEED_TYPE_CLIENT
}, stepper.last_feed_types())
self.assertAllClose(ph1_feed, stepper.cont(self.ph1))
self.assertEqual({
self.ph1.name: NodeStepper.FEED_TYPE_CLIENT
}, stepper.last_feed_types())
ph0_node = self.sess.graph.as_graph_element("ph0")
self.assertAllClose(ph0_feed, stepper.cont(ph0_node))
self.assertEqual({
self.ph0.name: NodeStepper.FEED_TYPE_CLIENT
}, stepper.last_feed_types())
self.assertAllClose([[-1.0], [6.0]], stepper.finalize())
示例13: testContToNodeWithOutputTensors
def testContToNodeWithOutputTensors(self):
"""cont() to an op should cache its output tensors if appropriate."""
stepper = NodeStepper(self.sess, "optim")
# In the transitive closure of the stepper, look for an op of which the
# output tensor also is in the transitive closure.
# Do not assume a specific op, e.g., ""gradients/e_grad/Reshape_1",
# because it may vary between builds.
closure = stepper.sorted_transitive_closure()
op_with_output_in_closure = None
for element_name in closure:
if element_name + ":0" in closure:
op_with_output_in_closure = str(element_name)
break
self.assertIsNotNone(op_with_output_in_closure)
output_tensor = op_with_output_in_closure + ":0"
# The op "gradients/?_grad/Reshape_1" is in the transitive closure of the
# stepper, because it is the control input to another o. However, its
# output tensor "gradients/?_grad/Reshape_1:0" is also in the transitive
# closure, because it is the (non-control) input of certain ops. Calling
# cont() on the op should lead to the caching of the tensor handle for
# the output tensor.
stepper.cont(op_with_output_in_closure)
self.assertEqual([output_tensor], stepper.handle_names())
# Do a cont() call that uses the cached tensor of
# "gradients/?_grad/Reshape_1:0".
stepper.cont(output_tensor)
self.assertEqual({
output_tensor: NodeStepper.FEED_TYPE_HANDLE
}, stepper.last_feed_types())
示例14: testContToUpdateB
def testContToUpdateB(self):
stepper = NodeStepper(self.sess, "optim")
result = stepper.cont("optim/update_b/ApplyGradientDescent")
self.assertIsNone(result)
self.assertEqual(set(["b:0"]), stepper.dirty_variables())
# For backprop on Variable b:
# Because f = a * b * b * c, df / da = 2 * a * b * c.
# 2.0 - learning_rate * 2 * a * b * c
# = 2.0 - 0.01 * 2 * 1.0 * 2.0 * 4.0 = 1.84
self.assertAllClose(1.0, self.sess.run(self.a))
self.assertAllClose(1.84, self.sess.run(self.b))
self.assertAllClose(4.0, self.sess.run(self.c))
示例15: testUsingNamesNotUsingIntermediateTensors
def testUsingNamesNotUsingIntermediateTensors(self):
stepper = NodeStepper(self.sess, "e:0")
# The first cont() call should have used no feeds.
result = stepper.cont("c:0")
self.assertAllClose(6.0, result)
self.assertEqual({}, stepper.last_feed_types())
# The second cont() call should have used the tensor handle from the
# previous cont() call.
result = stepper.cont("e:0")
self.assertAllClose(24.0, result)
self.assertEqual({
"c:0": NodeStepper.FEED_TYPE_HANDLE
}, stepper.last_feed_types())