當前位置: 首頁>>代碼示例>>Python>>正文


Python Vcf.get_header方法代碼示例

本文整理匯總了Python中svtools.vcf.file.Vcf.get_header方法的典型用法代碼示例。如果您正苦於以下問題:Python Vcf.get_header方法的具體用法?Python Vcf.get_header怎麽用?Python Vcf.get_header使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在svtools.vcf.file.Vcf的用法示例。


在下文中一共展示了Vcf.get_header方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_eight_column_vcf

# 需要導入模塊: from svtools.vcf.file import Vcf [as 別名]
# 或者: from svtools.vcf.file.Vcf import get_header [as 別名]
 def test_eight_column_vcf(self):
     header_lines = [
             '##fileformat=VCFv4.2',
             '##fileDate=20090805',
             '##source=myImputationProgramV3.1',
             '##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta',
             '##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",taxonomy=x>',
             '##phasing=partial',
             '##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data">',
             '##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth">',
             '##INFO=<ID=AF,Number=A,Type=Float,Description="Allele Frequency">',
             '##INFO=<ID=AA,Number=1,Type=String,Description="Ancestral Allele">',
             '##INFO=<ID=DB,Number=0,Type=Flag,Description="dbSNP membership, build 129">',
             '##INFO=<ID=H2,Number=0,Type=Flag,Description="HapMap2 membership">',
             '##ALT=<ID=DEL,Description="DELETION">',
             '##FILTER=<ID=q10,Description="Quality below 10">',
             '##FILTER=<ID=s50,Description="Less than 50% of samples have data">',
             '##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">',
             '##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">',
             '##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth">',
             '##FORMAT=<ID=HQ,Number=2,Type=Integer,Description="Haplotype Quality">',
             '#CHROM	POS	ID	REF	ALT	QUAL	FILTER	INFO']
     v = Vcf()
     v.add_header(header_lines)
     expected_header_lines = header_lines
     expected_header_lines[1] = '##fileDate=' + time.strftime('%Y%m%d')
     self.assertEqual(v.get_header(), '\n'.join(expected_header_lines))
     v.add_sample('ScottPilgrim')
     self.assertEqual(v.sample_to_col('ScottPilgrim'), 9)
     post_sample_add_header_lines = [
             '##fileformat=VCFv4.2',
             '##fileDate=' + time.strftime('%Y%m%d'),
             '##source=myImputationProgramV3.1',
             '##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta',
             '##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",taxonomy=x>',
             '##phasing=partial',
             '##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data">',
             '##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth">',
             '##INFO=<ID=AF,Number=A,Type=Float,Description="Allele Frequency">',
             '##INFO=<ID=AA,Number=1,Type=String,Description="Ancestral Allele">',
             '##INFO=<ID=DB,Number=0,Type=Flag,Description="dbSNP membership, build 129">',
             '##INFO=<ID=H2,Number=0,Type=Flag,Description="HapMap2 membership">',
             '##ALT=<ID=DEL,Description="DELETION">',
             '##FILTER=<ID=q10,Description="Quality below 10">',
             '##FILTER=<ID=s50,Description="Less than 50% of samples have data">',
             '##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">',
             '##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">',
             '##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth">',
             '##FORMAT=<ID=HQ,Number=2,Type=Integer,Description="Haplotype Quality">',
             '#CHROM	POS	ID	REF	ALT	QUAL	FILTER	INFO	FORMAT	ScottPilgrim']
     self.assertEqual(v.get_header(), '\n'.join(post_sample_add_header_lines))
開發者ID:hall-lab,項目名稱:svtools,代碼行數:53,代碼來源:file_tests.py

示例2: bedpeToVcf

# 需要導入模塊: from svtools.vcf.file import Vcf [as 別名]
# 或者: from svtools.vcf.file.Vcf import get_header [as 別名]
def bedpeToVcf(bedpe_file, vcf_out):
    myvcf = Vcf()
    converter = BedpeToVcfConverter(myvcf)
    in_header = True
    # parse the bedpe data
    header = list()
    for line in bedpe_file:
        if in_header:
            if line[0:2] == '##':
                header.append(line)
                continue
            elif line[0] == '#' and line[1] != '#':
                sample_list_str = line.rstrip().split('\t', 20)[-1]
                header.append('\t'.join([
                                    '#CHROM',
                                    'POS',
                                    'ID',
                                    'REF',
                                    'ALT',
                                    'QUAL',
                                    'FILTER',
                                    'INFO',
                                    sample_list_str
                                    ] ))
                continue
            else:
                in_header = False
                myvcf.add_header(header)
                myvcf.file_format='VCFv4.2'
                vcf_out.write(myvcf.get_header() + '\n')
        #
        bedpe = Bedpe(line.rstrip().split('\t'))
        variants = converter.convert(bedpe)
        for v in variants:
            vcf_out.write(v.get_var_string() + '\n')

    # close the VCF output file and header if no variants found
    if in_header == True:
        myvcf.add_header(header)
        myvcf.file_format='VCFv4.2'
        vcf_out.write(myvcf.get_header() + '\n')
    vcf_out.close()

    return
開發者ID:cc2qe,項目名稱:svtools,代碼行數:46,代碼來源:bedpetovcf.py

示例3: test_add_info_after

# 需要導入模塊: from svtools.vcf.file import Vcf [as 別名]
# 或者: from svtools.vcf.file.Vcf import get_header [as 別名]
 def test_add_info_after(self):
     header_lines = [
             '##fileformat=VCFv4.2',
             '##fileDate=20090805',
             '##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta',
             '##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth">',
             '##INFO=<ID=AF,Number=A,Type=Float,Description="Allele Frequency">',
             '##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">',
             '#CHROM	POS	ID	REF	ALT	QUAL	FILTER	INFO	FORMAT	NA00001	NA00002	NA00003']
     extra_line = '##INFO=<ID=DB,Number=0,Type=Flag,Description="dbSNP membership, build 129">'
     v = Vcf()
     v.add_header(header_lines)
     v.add_info_after('DP', 'DB', 0, 'Flag', 'dbSNP membership, build 129')
     expected_lines = header_lines[0:4] + [extra_line] + header_lines[4:]
     expected_lines[1] = '##fileDate=' + time.strftime('%Y%m%d')
     self.assertEqual(v.get_header(), '\n'.join(expected_lines))
     v2 = Vcf()
     v2.add_header(header_lines)
     v2.add_info_after('AF', 'DB', 0, 'Flag', 'dbSNP membership, build 129')
     expected_lines2 = header_lines[0:5] + [extra_line] + header_lines[5:]
     expected_lines2[1] = '##fileDate=' + time.strftime('%Y%m%d')
     self.assertEqual(v2.get_header(), '\n'.join(expected_lines2))
開發者ID:hall-lab,項目名稱:svtools,代碼行數:24,代碼來源:file_tests.py

示例4: run_gt_refine

# 需要導入模塊: from svtools.vcf.file import Vcf [as 別名]
# 或者: from svtools.vcf.file.Vcf import get_header [as 別名]
def run_gt_refine(vcf_in, vcf_out, diag_outfile, gender_file):

    vcf = Vcf()
    header = []
    in_header = True
    sex={}

    for line in gender_file:
        v = line.rstrip().split('\t')
        sex[v[0]] = int(v[1])

    outf=open(diag_outfile, 'w', 4096)
    ct=1
    
    for line in vcf_in:
        if in_header:
            if line[0] == "#":
               header.append(line)
               continue
            else:
                in_header = False
                vcf.add_header(header)
                vcf.add_info('SIL_GT_AVG', '1', 'Float', 'Average silhouette of genotype clusters')
                #vcf.add_format('SIL_GT', '1', 'Float', 'Per-sample genotype cluster silhouette')
                vcf_out.write(vcf.get_header() + '\n')

        var = Variant(line.rstrip().split('\t'), vcf)
        df=load_df(var,  sex)
        df1=get_silhouette(df)

        sil_avg=df1.iloc[0, df1.columns.get_loc('sil_gt_avg')]
        #sil_ind=df1.loc[:, 'sil_gt']
        var.info['SIL_GT_AVG'] = '%0.2f' % sil_avg
        vcf_out.write(var.get_var_string(use_cached_gt_string=True) + '\n')
        
        if ct==1:
            df1.to_csv(outf, header=True)
            ct += 1
        else:
            df1.to_csv(outf, header=False)

    vcf_out.close()
    vcf_in.close()
    outf.close()
    gender_file.close()

    return
開發者ID:abelhj,項目名稱:svtools,代碼行數:49,代碼來源:gt_silhouette.py

示例5: write_copynumber

# 需要導入模塊: from svtools.vcf.file import Vcf [as 別名]
# 或者: from svtools.vcf.file.Vcf import get_header [as 別名]
def write_copynumber(vcf_file, sample, vcf_out, cn_list):
    #go through the VCF and add the read depth annotations
    in_header = True
    header = []
    vcf = Vcf()
    i = 0
    s_index = -1
    for line in vcf_file:
        if in_header:
            if line[0] == '#' and line[1] == '#':
                header.append(line)
                continue
            if line[0] == '#' and line[1] != '#':
                  try:
                        s_index = line.rstrip().split('\t').index(sample)
                  except ValueError:
                        sys.stderr.write("Please input valid VCF, format field for " + sample + " not found in VCF")
                        sys.exit(1)
                  line = '\t'.join(map(str, line.rstrip().split('\t')[:9] + [sample]))
                  header.append(line)
                  continue
            else:
                in_header = False
                vcf.add_header(header)
                vcf.add_format('CN', 1, 'Float', 'Copy number of structural variant segment.')
                vcf_out.write(vcf.get_header() + '\n')
        v = line.rstrip().split('\t')
        # XXX Is this second check necessary? Wouldn't this be handled above? Missing header would hit this?
        if s_index == -1:
            sys.stderr.write("Input a valid sample name: " + sample + " not found in a provided VCF")
            sys.exit(1)
        v = v[:9] + [v[s_index]]
        if not any("SVTYPE=BND" in s for s in v):
            if "CN" not in v[8]:
                v[8] = v[8] + ":CN"
                v[9] = v[9] + ":" + str(cn_list[i])
            else:
                cn_index = v[8].rstrip().split(":").index("CN")
                gts = v[9].rstrip().split(":")
                gts[cn_index] = str(cn_list[i])
                v[9] = ":".join(gts)
            i += 1
        # write the VCF
        vcf_out.write('\t'.join(v) + '\n')
    vcf_out.close()
    return
開發者ID:abelhj,項目名稱:svtools,代碼行數:48,代碼來源:copynumber.py

示例6: sv_classify

# 需要導入模塊: from svtools.vcf.file import Vcf [as 別名]
# 或者: from svtools.vcf.file.Vcf import get_header [as 別名]
def sv_classify(vcf_in, gender_file, exclude_file, ae_dict, f_overlap, slope_threshold, rsquared_threshold, het_del_fit, hom_del_fit, params, diag_outfile):

    vcf_out = sys.stdout
    vcf = Vcf()
    header = []
    in_header = True
    min_pos_samps_for_regression = 10

    sex = {}
    # read sample genders
    for line in gender_file:
        v = line.rstrip().split('\t')
        sex[v[0]] = int(v[1])

    exclude = []
    if exclude_file is not None:
        for line in exclude_file:
            exclude.append(line.rstrip())

    if diag_outfile is not None:
        outf=open(diag_outfile, 'w', 4096)

    for line in vcf_in:
        if in_header:
            if line[0] == '#':
                header.append(line)
                continue
            else:
                in_header = False
                vcf.add_header(header)
                vcf_out.write(vcf.get_header() + '\n')

        # split variant line, quick pre-check if the SVTYPE is BND, and skip if so
        v = line.rstrip().split('\t')
        info = v[7].split(';')
        svtype = None
        for x in info:
            if x.startswith('SVTYPE='):
                svtype = x.split('=')[1]
                break

        # bail if not DEL or DUP prior to reclassification
        if svtype not in ['DEL', 'DUP']:
            vcf_out.write(line)
            continue
        
        # parse the VCF line
        var = Variant(v, vcf, True)

        # check intersection with mobile elements
        if ae_dict is not None and var.info['SVTYPE'] in ['DEL']:
            ae = annotation_intersect(var, ae_dict, f_overlap)
            if ae is not None:
                if ae.startswith('SINE') or ae.startswith('LINE') or ae.split('|')[2].startswith('SVA'):
                    ae = 'ME:' + ae
                var.alt = '<DEL:%s>' % ae
                var.info['SVTYPE'] = 'MEI'
                vcf_out.write(var.get_var_string(True) + '\n')
                continue


        # for now, don't worry about sex chromosomes
        if (var.chrom == 'X' or var.chrom == 'Y'):
            vcf_out.write(line)
            continue

        #count positively genotyped samples
        num_pos_samps = 0;
        for s in var.sample_list:
            if s in exclude:
                continue
            if var.genotype(s).get_format('GT') not in ["./.", "0/0"]:
                num_pos_samps += 1

        high_freq_support = False
        low_freq_support = False
        nb_support = False

        if num_pos_samps == 0:
            vcf_out.write(line)
        else:
            df=load_df(var, exclude, sex)

            if has_rd_support_by_nb(df, het_del_fit, hom_del_fit, params):
                nb_support = True

            if num_pos_samps < min_pos_samps_for_regression:
                if has_low_freq_depth_support(df):
                    low_freq_support = True
                    vcf_out.write(line)
                else:
                    for m_var in to_bnd_strings(var, True ):
                        vcf_out.write(m_var + '\n')
            else:
                if has_high_freq_depth_support(df, slope_threshold, rsquared_threshold):
                    high_freq_support = True
                    vcf_out.write(line)
                else:
                    for m_var in to_bnd_strings(var, True):
                        vcf_out.write(m_var + '\n')
#.........這裏部分代碼省略.........
開發者ID:mkiwala,項目名稱:svtools,代碼行數:103,代碼來源:reclass_combined.py

示例7: varLookup

# 需要導入模塊: from svtools.vcf.file import Vcf [as 別名]
# 或者: from svtools.vcf.file.Vcf import get_header [as 別名]
def varLookup(aFile, bFile, bedpe_out, max_distance, pass_prefix, cohort_name):
    # FIXME The following code is heavily duplicated with vcftobedpe and bedpetovcf. Harmonize!!!
    bList = list()
    headerObj=Vcf() #co-opt the VCF header object
    if cohort_name is None:
        cohort_name=str(str(bFile).split('/')[-1])
        
    if bFile == "stdin":
        bData = sys.stdin
    elif bFile.endswith('.gz'):
        bData = gzip.open(bFile, 'rb')
    else:
        bData = open(bFile, 'r')
    for bLine in bData:
        if bLine.startswith(pass_prefix):
            continue
        bentry = Bedpe(bLine.rstrip().split('\t'))
        if bentry.af is None:
            sys.stderr.write('No allele frequency for variant found in -b file. This tool requires allele frequency information to function. Please add with svtools afreq and rerun\n')
            sys.exit(1)
        bList.append(bentry)
    
    if aFile == "stdin":
        aData = sys.stdin
    elif aFile.endswith('.gz'):
        aData = gzip.open(aFile, 'rb')
    else:
        aData = open(aFile, 'r')
    in_header=True    
    header_lines = []
    sample_list = None
    for aLine in aData:
        if pass_prefix is not None and aLine.startswith(pass_prefix):
            if aLine[0] == '#' and aLine[1] != '#':
                sample_list = aLine.rstrip().split('\t', 14)[-1]
            else:
                header_lines.append(aLine)
            continue
        else:
            if in_header == True:
                headerObj.add_header(header_lines)
                headerObj.add_info(cohort_name + '_AF', '.', 'Float', 'Allele frequency(ies) for matching variants found in the ' + cohort_name + ' vcf' + ' (' + str(str(bFile).split('/')[-1]) + ')' )
                headerObj.add_info(cohort_name + '_VarID', '.', 'Integer', 'List of Variant ID(s) for matching variants found in the ' + cohort_name + ' vcf' + ' (' + str(str(bFile).split('/')[-1]) + ')' )

                header = headerObj.get_header()
                bedpe_out.write(header[:header.rfind('\n')] + '\n')                
                if len(sample_list) > 0:
                    bedpe_out.write('\t'.join(['#CHROM_A',
                                               'START_A',
                                               'END_A',
                                               'CHROM_B',
                                               'START_B',
                                               'END_B',
                                               'ID',
                                               'QUAL',
                                               'STRAND_A',
                                               'STRAND_B',
                                               'TYPE',
                                               'FILTER',
                                               'INFO_A','INFO_B',
                                               sample_list]
                                             ) + '\n')
                else:
                    bedpe_out.write('\t'.join(['#CHROM_A',
                                               'START_A',
                                               'END_A',
                                               'CHROM_B',
                                               'START_B',
                                               'END_B',
                                               'ID',
                                               'QUAL',
                                               'STRAND_A',
                                               'STRAND_B',
                                               'TYPE',
                                               'FILTER',
                                               'INFO_A','INFO_B']
                                              ) + '\n')
                in_header=False
            a = Bedpe(aLine.rstrip().split('\t'))
            if a.af is None:
                sys.stderr.write('No allele frequency for variant found in -a file. This tool requires allele frequency information to function. Please add with svtools afreq and rerun\n')
                sys.exit(1)
            for b in bList:
                add(a,b,max_distance)
            bedpe_out.write(get_var_string(a, cohort_name))
開發者ID:jeldred,項目名稱:svtools,代碼行數:87,代碼來源:varlookup.py

示例8: execute

# 需要導入模塊: from svtools.vcf.file import Vcf [as 別名]
# 或者: from svtools.vcf.file.Vcf import get_header [as 別名]
    def execute(self, output_handle=sys.stdout):
        in_header = True
        header = []
        vcf = Vcf()
        vcf_out = output_handle

        # read input VCF
        for line in self.vcf_stream:
            if in_header:
                if line.startswith('##'):
                    header.append(line) 
                    continue
                elif line.startswith('#CHROM'):
                    v = line.rstrip().split('\t')
                    header.append('\t'.join(v))

                    in_header = False
                    vcf.add_header(header)
                    
                    vcf.add_info('AF', 'A', 'Float', 'Allele Frequency, for each ALT allele, in the same order as listed')
                    vcf.add_info('NSAMP', '1', 'Integer', 'Number of samples with non-reference genotypes')
                    vcf.add_info('MSQ', '1', 'Float', 'Mean sample quality of positively genotyped samples')

                    # write header
                    vcf_out.write(vcf.get_header() + '\n')
                    #vcf_out.write('\t' + '\t'.join(v[8:]) + '\n')
                continue

            v = line.rstrip().split('\t')
            var = Variant(v, vcf)

            # extract genotypes from VCF
            num_alt = len(var.alt.split(','))
            alleles = [0] * (num_alt + 1)
            num_samp = 0
            sum_sq = 0.0

            for gt in var.genotypes():
                gt_string = gt.get_format('GT')

                if '.' not in gt_string:
                    indexes = self.numeric_alleles(gt_string)

                    for i in indexes:
                        alleles[i] += 1

                    # iterate the number of non-reference samples
                    if sum(indexes) > 0:
                        num_samp += 1
                        try:
                            sum_sq += float(gt.get_format('SQ'))
                        except KeyError:
                            pass

            allele_sum = float(sum(alleles))
            allele_freq = ['.'] * len(alleles)

            # populate AF
            if allele_sum > 0:
                for i in xrange(len(alleles)):
                    allele_freq[i] = alleles[i] / allele_sum
                var.info['AF'] = ','.join(map(str, ['%.4g' % a for a in allele_freq[1:]]))
            else:
                var.info['AF'] = ','.join(map(str, allele_freq[1:]))
            
            # populate NSAMP
            var.info['NSAMP'] = num_samp
            if num_samp > 0:
                msq = '%0.2f' % (sum_sq / num_samp)
            else:
                msq = '.'
            var.info['MSQ'] = msq

            # after all samples have been processed, write
            vcf_out.write(var.get_var_string(use_cached_gt_string=True) + '\n')
        vcf_out.close()
開發者ID:MMesbahU,項目名稱:svtools,代碼行數:78,代碼來源:afreq.py

示例9: run_gt_refine

# 需要導入模塊: from svtools.vcf.file import Vcf [as 別名]
# 或者: from svtools.vcf.file.Vcf import get_header [as 別名]
def run_gt_refine(vcf_in, vcf_out, diag_outfile, gender_file, exclude_file):

    vcf = Vcf()
    header = []
    in_header = True
    sex={}
    
    for line in gender_file:
        v = line.rstrip().split('\t')
        sex[v[0]] = int(v[1])

    exclude = []
    if exclude_file is not None:
        for line in exclude_file:
            exclude.append(line.rstrip())

    outf=open(diag_outfile, 'w', 4096)
    ct=1
    
    for line in vcf_in:
        if in_header:
            if line[0] == "#":
               header.append(line)
               continue
            else:
                in_header = False
                vcf.add_header(header)
                vcf.add_info('MEDGQR', '1', 'Float', 'Median quality for refined GT')
                vcf.add_info('Q10GQR', '1', 'Float', 'Q10 quality for refined GT')
                vcf.add_format('GQR', 1, 'Float', 'Quality of refined genotype.')
                vcf.add_format('GTR', 1, 'String', 'Refined genotype.')
                vcf_out.write(vcf.get_header() + '\n')

        v = line.rstrip().split('\t')
        info = v[7].split(';')
        svtype = None
        for x in info:
            if x.startswith('SVTYPE='):
                svtype = x.split('=')[1]
                break
        # bail if not DEL or DUP prior to reclassification
        if svtype not in ['DEL']:
            vcf_out.write(line)
            continue
        
        var = Variant(v, vcf)
        sys.stderr.write("%s\n" % var.var_id)
        
        sys.stderr.write("%f\n" % float(var.get_info('AF')))
        if float(var.get_info('AF'))<0.01:
            vcf_out.write(line)
        else:
            df=load_df(var, exclude, sex)
            recdf=recluster(df)
            if ct==1:
                recdf.to_csv(outf, header=True)
                ct += 1
            else:
              recdf.to_csv(outf, header=False)
            var.set_info("MEDGQR", '{:.2f}'.format(recdf.iloc[0,:].loc['med_gq_re']))
            var.set_info("Q10GQR", '{:.2f}'.format(recdf.iloc[0,:].loc['q10_gq_re']))
            recdf.set_index('sample', inplace=True)
            for s in var.sample_list:
                if s in recdf.index:
                    var.genotype(s).set_format("GTR", recdf.loc[s,'GTR'])
                    var.genotype(s).set_format("GQR", '{:.2f}'.format(recdf.loc[s,'gq_re']))
                else:
                    var.genotype(s).set_format("GTR", "./.")
                    var.genotype(s).set_format("GQR", 0)
            vcf_out.write(var.get_var_string(use_cached_gt_string=False) + '\n')

    vcf_out.close()
    vcf_in.close()
    gender_file.close()
    outf.close()
    if exclude_file is not None:
        exclude_file.close()
    return
開發者ID:cc2qe,項目名稱:svtools,代碼行數:80,代碼來源:geno_refine_12.py

示例10: sv_classify

# 需要導入模塊: from svtools.vcf.file import Vcf [as 別名]
# 或者: from svtools.vcf.file.Vcf import get_header [as 別名]
def sv_classify(vcf_in, vcf_out, gender_file, exclude_file, ae_dict, f_overlap, slope_threshold, rsquared_threshold, p_cnv, het_del_fit, hom_del_fit, params, diag_outfile, method):

    vcf = Vcf()
    header = []
    in_header = True
    sex = {}
    # read sample genders
    for line in gender_file:
        v = line.rstrip().split('\t')
        sex[v[0]] = int(v[1])

    exclude = []
    if exclude_file is not None:
        for line in exclude_file:
            exclude.append(line.rstrip())

    if diag_outfile is not None:
        outf=open(diag_outfile, 'w', 4096)
        outf.write("varid\torig_svtype\tsvlen\tnum_pos_samps\tnb_support\tls_support\thybrid_support\thas_rd_support\n")

    for line in vcf_in:
        if in_header:
            if line[0] == '#':
                header.append(line)
                continue
            else:
                in_header = False
                vcf.add_header(header)
                vcf_out.write(vcf.get_header() + '\n')

        v = line.rstrip().split('\t')
        info = v[7].split(';')
        svtype = None
        for x in info:
            if x.startswith('SVTYPE='):
                svtype = x.split('=')[1]
                break
        # bail if not DEL or DUP prior to reclassification
        if svtype not in ['DEL', 'DUP']:
            vcf_out.write(line)
            continue
        
        var = Variant(v, vcf)

        # check intersection with mobile elements
        if ae_dict is not None and var.info['SVTYPE'] in ['DEL']:
            ae = annotation_intersect(var, ae_dict, f_overlap)
            if ae is not None:
                if ae.startswith('SINE') or ae.startswith('LINE') or ae.split('|')[2].startswith('SVA'):
                    ae = 'ME:' + ae
                var.alt = '<DEL:%s>' % ae
                var.info['SVTYPE'] = 'MEI'
                vcf_out.write(var.get_var_string(True) + '\n')
                continue

        #count positively genotyped samples
        num_pos_samps = 0
        num_total_samps=len(var.sample_list)

        for s in var.sample_list:
            if var.genotype(s).get_format('GT') not in ["./.", "0/0"]:
                num_pos_samps += 1

        nb_support = False
        ls_support = False
        hybrid_support = False
        has_rd_support = False

        if num_pos_samps == 0:
            vcf_out.write(line)
        else:
            df=load_df(var, exclude, sex)
            if method=='large_sample':
                ls_support = has_rd_support_by_ls(df, slope_threshold, rsquared_threshold, num_pos_samps)
                has_rd_support=ls_support
            elif method=='naive_bayes':
                nb_support = has_rd_support_by_nb(df, het_del_fit, hom_del_fit, params, p_cnv)
                has_rd_support=nb_support
            elif method=='hybrid':
                ls_support, nb_support, hybrid_support = has_rd_support_hybrid(df, het_del_fit, hom_del_fit, params, p_cnv, slope_threshold, rsquared_threshold, num_pos_samps)
                has_rd_support=hybrid_support

            if has_rd_support:
               vcf_out.write(line)
            else:
                for m_var in to_bnd_strings(var, True):
                    vcf_out.write(m_var + '\n')

            if diag_outfile is not None:
              svlen=df['svlen'][0]
              outf.write(var.var_id+"\t"+svtype+"\t"+str(svlen)+"\t"+str(num_pos_samps)+"\t"+str(nb_support)+"\t"+str(ls_support)+"\t"+str(hybrid_support)+"\t"+str(has_rd_support)+"\n")

    vcf_out.close()
    if diag_outfile is not None:
        outf.close()
    vcf_in.close()
    vcf_out.close()
    gender_file.close()
    if exclude_file is not None:
        exclude_file.close()
#.........這裏部分代碼省略.........
開發者ID:MMesbahU,項目名稱:svtools,代碼行數:103,代碼來源:sv_classifier.py

示例11: l_cluster_by_line

# 需要導入模塊: from svtools.vcf.file import Vcf [as 別名]
# 或者: from svtools.vcf.file.Vcf import get_header [as 別名]
def l_cluster_by_line(file_name, percent_slop=0, fixed_slop=0, use_product=False, include_genotypes=False, weighting_scheme='unweighted'):

    v_id = 0

    in_header = True
    header = []
    vcf = Vcf()
    vcf_out=sys.stdout

    with InputStream(file_name) as vcf_stream:

        BP_l = []
        BP_sv_type = ''
        BP_max_end_l = -1
        BP_chr_l = ''
        sample_order = []

        for line in vcf_stream:

            if in_header:

                if line.startswith('##'):
                    header.append(line)
                    continue

                elif line.startswith('#CHROM'):
                    v=line.rstrip().split('\t')
                    for headline in header:
                        if headline[:8] == '##SAMPLE':
                            sample_order.append(headline.rstrip()[13:-1])
                    hline=''
                    if include_genotypes :
                        v.extend(sample_order)
                        hline='\t'.join(v)
                    else :
                        v=v[:8]
                        hline='\t'.join(v)
                    header.append(hline)
                    in_header=False
                    vcf.add_header(header)
                    vcf.add_info('ALG', '1', 'String', 'Algorithm used to merge this breakpoint')

                    if include_genotypes:
                        vcf_out.write(vcf.get_header()+'\n')
                    else:
                        vcf_out.write(vcf.get_header(False)+'\n')

                continue

            b = Breakpoint(l_bp.parse_vcf_record(line), percent_slop=percent_slop, fixed_slop=fixed_slop)
            if (len(BP_l) == 0) or ((b.left.start <= BP_max_end_l) and (b.left.chrom == BP_chr_l) and (b.sv_type == BP_sv_type)):
                BP_l.append(b)
                BP_max_end_l = max(BP_max_end_l, b.left.end)
                BP_chr_l = b.left.chrom
                BP_sv_type = b.sv_type

            else:
                v_id = r_cluster(BP_l, sample_order, v_id, use_product, vcf, vcf_out, include_genotypes, weighting_scheme)
                BP_l = [b]
                BP_max_end_l = b.left.end
                BP_sv_type = b.sv_type
                BP_chr_l = b.left.chrom

        if len(BP_l) > 0:
            v_id = r_cluster(BP_l, sample_order, v_id, use_product, vcf, vcf_out, include_genotypes, weighting_scheme)
開發者ID:hall-lab,項目名稱:svtools,代碼行數:67,代碼來源:lmerge.py

示例12: execute

# 需要導入模塊: from svtools.vcf.file import Vcf [as 別名]
# 或者: from svtools.vcf.file.Vcf import get_header [as 別名]
    def execute(self, output_handle=sys.stdout):
        in_header = True
        header = []
        vcf = Vcf()
        vcf_out = output_handle

        # read input VCF
        for line in self.vcf_stream:
            if in_header:
                if line.startswith('##'):
                    header.append(line) 
                    continue
                elif line.startswith('#CHROM'):
                    v = line.rstrip().split('\t')
                    header.append('\t'.join(v))

                    in_header = False
                    vcf.add_header(header)
                    
                    vcf.add_info('AF', 'A', 'Float', 'Allele Frequency, for each ALT allele, in the same order as listed')
                    vcf.add_info('NSAMP', '1', 'Integer', 'Number of samples with non-reference genotypes')
                    vcf.add_info('MSQ', '1', 'Float', 'Mean sample quality of positively genotyped samples')

                    # write header
                    vcf_out.write(vcf.get_header() + '\n')
                    #vcf_out.write('\t' + '\t'.join(v[8:]) + '\n')
                continue

            v = line.rstrip().split('\t')
            var = Variant(v, vcf, fixed_genotypes=True)

            # extract genotypes from VCF
            num_alt = len(var.alt.split(','))
            alleles = [0] * (num_alt + 1)
            num_samp = 0

            gt = [var.genotype(s).get_format('GT') for s in var.sample_list]
            for gt_string in gt:

                if '.' in  gt_string:
                    continue
                gt = gt_string.split('/')
                if len(gt) == 1:
                    gt = gt_string.split('|')
                gt = map(int, gt)

                for i in xrange(len(gt)):
                    alleles[gt[i]] += 1

                # iterate the number of non-reference samples
                if sum(gt) > 0:
                    num_samp += 1

            allele_sum = float(sum(alleles))
            allele_freq = ['.'] * len(alleles)

            # populate AF
            if allele_sum > 0:
                for i in xrange(len(alleles)):
                    allele_freq[i] = alleles[i] / allele_sum
                var.info['AF'] = ','.join(map(str, ['%.4g' % a for a in allele_freq[1:]]))
            else:
                var.info['AF'] = ','.join(map(str, allele_freq[1:]))
            
            # populate NSAMP
            var.info['NSAMP'] = num_samp
            var.info['MSQ'] = self.calc_msq(var)

            # after all samples have been processed, write
            vcf_out.write(var.get_var_string(use_cached_gt_string=True) + '\n')
        vcf_out.close()
開發者ID:jeldred,項目名稱:svtools,代碼行數:73,代碼來源:afreq.py

示例13: sv_classify

# 需要導入模塊: from svtools.vcf.file import Vcf [as 別名]
# 或者: from svtools.vcf.file.Vcf import get_header [as 別名]
def sv_classify(vcf_in, gender_file, exclude_file, ae_dict, f_overlap, slope_threshold, rsquared_threshold):
    vcf_out = sys.stdout
    vcf = Vcf()
    header = []
    in_header = True
    min_pos_samps_for_regression = 10

    gender = {}
    # read sample genders
    for line in gender_file:
        v = line.rstrip().split('\t')
        gender[v[0]] = int(v[1])

    exclude = []
    if exclude_file is not None:
        for line in exclude_file:
            exclude.append(line.rstrip())

    for line in vcf_in:
        if in_header:
            if line[0] == '#':
                header.append(line)
                continue
            else:
                in_header = False
                vcf.add_header(header)
                # write the output header
                vcf_out.write(vcf.get_header() + '\n')

        # split variant line, quick pre-check if the SVTYPE is BND, and skip if so
        v = line.rstrip().split('\t')

        info = v[7].split(';')
        svtype = None
        for x in info:
            if x.startswith('SVTYPE='):
                svtype = x.split('=')[1]
                break

        # bail if not DEL or DUP prior to reclassification
        if svtype not in ['DEL', 'DUP']:
            vcf_out.write(line)
            continue

        # parse the VCF line
        var = Variant(v, vcf, True)

        # check intersection with mobile elements
        if ae_dict is not None and var.info['SVTYPE'] in ['DEL']:
            ae = annotation_intersect(var, ae_dict, f_overlap)
            if ae is not None:
                if ae.startswith('SINE') or ae.startswith('LINE') or ae.split('|')[2].startswith('SVA'):
                    ae = 'ME:' + ae
                var.alt = '<DEL:%s>' % ae
                var.info['SVTYPE'] = 'MEI'
                vcf_out.write(var.get_var_string(True) + '\n')
                continue

        # # write to directory
        # writedir = 'data/r11.100kb.dup'

        # annotate based on read depth
        if var.info['SVTYPE'] in ['DEL', 'DUP']:
            # count the number of positively genotyped samples
            num_pos_samps = 0;
            for s in var.sample_list:
                if s in exclude:
                    continue
                if var.genotype(s).get_format('GT') not in ["./.", "0/0"]:
                    num_pos_samps += 1

            if num_pos_samps < min_pos_samps_for_regression:
                if has_low_freq_depth_support(var, gender, exclude):
                    # has_low_freq_depth_support(var, gender, exclude, writedir + '/low_freq_rd')
                    # has_high_freq_depth_support(var, gender, exclude, slope_threshold, rsquared_threshold, writedir + '/low_freq_rd')
                    # write variant
                    #vcf_out.write(var.get_var_string(True) + '\n')
                    vcf_out.write(line)
                else:
                    # has_low_freq_depth_support(var, gender, exclude, writedir + '/low_freq_no_rd')
                    # has_high_freq_depth_support(var, gender, exclude, slope_threshold, rsquared_threshold, writedir + '/low_freq_no_rd')
                    for m_var in to_bnd_strings(var):
                        vcf_out.write(m_var + '\n')
            else:
                if has_high_freq_depth_support(var, gender, exclude, slope_threshold, rsquared_threshold):
                    # has_high_freq_depth_support(var, gender, exclude, slope_threshold, rsquared_threshold, writedir + '/high_freq_rd')
                    # has_low_freq_depth_support(var, gender, exclude, writedir + '/high_freq_rd')
                    # write variant
                    #vcf_out.write(var.get_var_string(True) + '\n')
                    vcf_out.write(line)
                else:
                    # has_high_freq_depth_support(var, gender, exclude, slope_threshold, rsquared_threshold, writedir + '/high_freq_no_rd')
                    # has_low_freq_depth_support(var, gender, exclude, writedir + '/high_freq_no_rd')
                    for m_var in to_bnd_strings(var):
                        vcf_out.write(m_var + '\n')
    vcf_out.close()
    return
開發者ID:jeldred,項目名稱:svtools,代碼行數:99,代碼來源:sv_classifier.py

示例14: bedpeToVcf

# 需要導入模塊: from svtools.vcf.file import Vcf [as 別名]
# 或者: from svtools.vcf.file.Vcf import get_header [as 別名]
def bedpeToVcf(bedpe_file, vcf_out):
    myvcf = Vcf()
    in_header = True
    # parse the bedpe data
    header = list()
    for line in bedpe_file:
        if in_header:
            if line[0:2] == '##':
                header.append(line)
                continue
            elif line[0] == '#' and line[1] != '#':    
                sample_list_str = line.rstrip().split('\t', 14)[-1]
                header.append('\t'.join([
                                    '#CHROM',
                                    'POS',
                                    'ID',
                                    'REF',
                                    'ALT',
                                    'QUAL',
                                    'FILTER',
                                    'INFO',
                                    sample_list_str
                                    ] ))
                continue
            else:
                in_header = False
                myvcf.add_header(header)
                myvcf.file_format='VCFv4.2'
                vcf_out.write(myvcf.get_header() + '\n')
        # 
        bedpe = Bedpe(line.rstrip().split('\t'))
        if bedpe.svtype == 'BND':
            bedpe1_list = [
                    bedpe.c1, 
                    bedpe.b1 + 1,
                    bedpe.name + '_1', #ID
                    'N',
                    '<' + str(bedpe.svtype) + '>', #ALT
                    bedpe.score,
                    bedpe.filter
                    ]
            bedpe1_list.extend(bedpe.misc)
            var1 = Variant(bedpe1_list, myvcf)
            if bedpe.o1 == '+':
                if bedpe.o2 == '-':
                    var1.alt = '%s[%s:%s[' % (var1.ref, bedpe.c2, bedpe.b2 + 1)
                elif bedpe.o2 == '+':
                    var1.alt = '%s]%s:%s]' % (var1.ref, bedpe.c2, bedpe.b2 + 1)
            elif bedpe.o1 == '-':
                if bedpe.o2 == '+':
                    var1.alt = ']%s:%s]%s' % (bedpe.c2, bedpe.b2 + 1, var1.ref)
                elif bedpe.o2 == '-':
                    var1.alt = '[%s:%s[%s' % (bedpe.c2, bedpe.b2 + 1, var1.ref)
            misc = copy.deepcopy(bedpe.misc)
            strands = re.split('=|:',''.join(filter(lambda x: 'STRANDS=' in x, bedpe.misc[0].split(";"))))
            strands_str = str(strands[0]) + '=' + str(strands[1][::-1]) + ':' + str(strands[2])
            misc[0]=misc[0].replace(''.join(filter(lambda x: 'STRANDS=' in x, bedpe.misc[0].split(";"))), strands_str)
            #add the cipos ciend,cipos95 and ciend95 variables
            misc[0]=misc[0].replace(''.join(filter(lambda x: 'CIPOS=' in x, bedpe.misc[0].split(";"))),'CIPOS='+ re.split('=',''.join(filter(lambda x: 'CIEND=' in x, bedpe.misc[0].split(";"))))[1])            
            misc[0]=misc[0].replace(''.join(filter(lambda x: 'CIEND='  in x, bedpe.misc[0].split(";"))),'CIEND='+ re.split('=',''.join(filter(lambda x: 'CIPOS=' in x, bedpe.misc[0].split(";"))))[1])
            misc[0]=misc[0].replace(''.join(filter(lambda x: 'CIPOS95=' in x, bedpe.misc[0].split(";"))),'CIPOS95='+ re.split('=',''.join(filter(lambda x: 'CIEND95=' in x, bedpe.misc[0].split(";"))))[1])
            misc[0]=misc[0].replace(''.join(filter(lambda x: 'CIEND95=' in x, bedpe.misc[0].split(";"))),'CIEND95='+ re.split('=',''.join(filter(lambda x: 'CIPOS95=' in x, bedpe.misc[0].split(";"))))[1])
            #Change MATEID
            misc[0]= misc[0].replace(''.join(filter(lambda x: 'MATEID=' in x, bedpe.misc[0].split(";"))),'MATEID=' + bedpe.name + '_2')
            #ADD IDENTIFIER FOR SECONDARY BREAKEND MATE
            misc[0]=misc[0].replace(''.join(filter(lambda x: 'EVENT=' in x, bedpe.misc[0].split(";"))),''.join(filter(lambda x: 'EVENT=' in x, bedpe.misc[0].split(";"))) + ';SECONDARY;')

            bedpe2_list = [
                    bedpe.c2,  #chrom1
                    bedpe.b2 + 1,
                    bedpe.name + '_2', #ID
                    'N',
                    '<' + str(bedpe.svtype) + '>', #ALT
                    bedpe.score,
                    bedpe.filter
                    ]
            bedpe2_list.extend(misc)

            var2 = Variant(bedpe2_list, myvcf)
            # add the strands field. For variant 2 must switch the order
            if bedpe.o2 == '+':
                if bedpe.o1 == '-':
                    var2.alt = '%s[%s:%s[' % (var2.ref, bedpe.c1, bedpe.b1 + 1)
                elif bedpe.o1 == '+':
                    var2.alt = '%s]%s:%s]' % (var2.ref, bedpe.c1, bedpe.b1 + 1)
            elif bedpe.o2 == '-':
                if bedpe.o1 == '+':
                    var2.alt = ']%s:%s]%s' % (bedpe.c1, bedpe.b1 + 1, var2.ref)
                elif bedpe.o1 == '-':
                    var2.alt = '[%s:%s[%s' % (bedpe.c1, bedpe.b1 + 1, var2.ref)
            if bedpe.malformedFlag == 0:
                vcf_out.write(var1.get_var_string() + '\n')
                vcf_out.write(var2.get_var_string() + '\n')
            elif bedpe.malformedFlag == 1:
                vcf_out.write(var2.get_var_string() + '\n')
            elif bedpe.malformedFlag == 2:
                vcf_out.write(var1.get_var_string() + '\n')
        else:
            # set VCF info elements for simple events
            bedpe_list = [
#.........這裏部分代碼省略.........
開發者ID:mkiwala,項目名稱:svtools,代碼行數:103,代碼來源:bedpetovcf.py


注:本文中的svtools.vcf.file.Vcf.get_header方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。