本文整理匯總了Python中sklearn.preprocessing.KernelCenterer.transform方法的典型用法代碼示例。如果您正苦於以下問題:Python KernelCenterer.transform方法的具體用法?Python KernelCenterer.transform怎麽用?Python KernelCenterer.transform使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.preprocessing.KernelCenterer
的用法示例。
在下文中一共展示了KernelCenterer.transform方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_kernelcenterer_vs_sklearn
# 需要導入模塊: from sklearn.preprocessing import KernelCenterer [as 別名]
# 或者: from sklearn.preprocessing.KernelCenterer import transform [as 別名]
def test_kernelcenterer_vs_sklearn():
# Compare msmbuilder.preprocessing.KernelCenterer
# with sklearn.preprocessing.KernelCenterer
kernelcentererr = KernelCentererR()
kernelcentererr.fit(np.concatenate(trajs))
kernelcenterer = KernelCenterer()
kernelcenterer.fit(trajs)
y_ref1 = kernelcentererr.transform(trajs[0])
y1 = kernelcenterer.transform(trajs)[0]
np.testing.assert_array_almost_equal(y_ref1, y1)
示例2: cv_mkl
# 需要導入模塊: from sklearn.preprocessing import KernelCenterer [as 別名]
# 或者: from sklearn.preprocessing.KernelCenterer import transform [as 別名]
def cv_mkl(kernel_list, labels, mkl, n_folds, dataset, data):
n_sample, n_labels = labels.shape
n_km = len(kernel_list)
tags = np.loadtxt("../data/cv/"+data+".cv")
for i in range(1,n_folds+1):
print "Test fold %d" %i
res_f = "../svm_result/weights/"+dataset+"_fold_%d_%s.weights" % (i,mkl)
para_f = "../svm_result/upperbound/"+dataset+"_fold_%d_%s.ubound" % (i,mkl)
test = np.array(tags == i)
train = np.array(~test)
train_y = labels[train,:]
test_y = labels[test,:]
n_train = len(train_y)
n_test = len(test_y)
train_km_list = []
# all train kernels are nomalized and centered
for km in kernel_list:
kc = KernelCenterer()
train_km = km[np.ix_(train, train)]
# center train and test kernels
kc.fit(train_km)
train_km_c = kc.transform(train_km)
train_km_list.append(train_km_c)
if mkl == 'UNIMKL':
res = UNIMKL(train_km_list, train_y)
np.savetxt(res_f, res)
if mkl == 'ALIGNF2':
res = alignf2(train_km_list, train_y, data)
np.savetxt(res_f, res)
if mkl.find('ALIGNF2SOFT') != -1:
bestC, res = ALIGNF2SOFT(train_km_list, train_y, i, tags, data)
np.savetxt(res_f, res)
np.savetxt(para_f, bestC)
if mkl == "TSMKL":
W = np.zeros((n_km, n_labels))
for j in xrange(n_labels):
print "..label",j
W[:,j] = TSMKL(train_km_list, train_y[:,j])
res_f = "../svm_result/weights/"+dataset+"_fold_%d_%s.weights" % (i,mkl)
np.savetxt(res_f, W)
示例3: test_center_kernel
# 需要導入模塊: from sklearn.preprocessing import KernelCenterer [as 別名]
# 或者: from sklearn.preprocessing.KernelCenterer import transform [as 別名]
def test_center_kernel():
"""Test that KernelCenterer is equivalent to Scaler in feature space"""
X_fit = np.random.random((5, 4))
scaler = Scaler(with_std=False)
scaler.fit(X_fit)
X_fit_centered = scaler.transform(X_fit)
K_fit = np.dot(X_fit, X_fit.T)
# center fit time matrix
centerer = KernelCenterer()
K_fit_centered = np.dot(X_fit_centered, X_fit_centered.T)
K_fit_centered2 = centerer.fit_transform(K_fit)
assert_array_almost_equal(K_fit_centered, K_fit_centered2)
# center predict time matrix
X_pred = np.random.random((2, 4))
K_pred = np.dot(X_pred, X_fit.T)
X_pred_centered = scaler.transform(X_pred)
K_pred_centered = np.dot(X_pred_centered, X_fit_centered.T)
K_pred_centered2 = centerer.transform(K_pred)
assert_array_almost_equal(K_pred_centered, K_pred_centered2)
示例4: ovkr_mkl
# 需要導入模塊: from sklearn.preprocessing import KernelCenterer [as 別名]
# 或者: from sklearn.preprocessing.KernelCenterer import transform [as 別名]
def ovkr_mkl(kernel_list, labels, mkl, n_folds, dataset, data):
n_sample, n_labels = labels.shape
n_km = len(kernel_list)
tags = np.loadtxt("../data/cv/"+data+".cv")
# Add noise to the output
noise_level = [0.005, 0.010, 0.015, 0.020, 0.025]
for nid in xrange(len(noise_level)):
noi = noise_level[nid]
print "noise", noi, nid
Y = addNoise(labels, noi)
pred = np.zeros((n_sample, n_labels))
pred_bin = np.zeros((n_sample, n_labels))
# Run for each fold
for i in range(1,n_folds+1):
print "Test fold %d" %i
res_f = "../ovkr_result/noisy_weights/"+dataset+"_fold_%d_%s_noise_%d.weights" % (i,mkl, nid)
# divide data
test = np.array(tags == i)
train = np.array(~test)
train_y = Y[train,:]
test_y = Y[test,:]
n_train = len(train_y)
n_test = len(test_y)
train_km_list = []
test_km_list = []
for km in kernel_list:
kc = KernelCenterer()
train_km = km[np.ix_(train, train)]
test_km = km[np.ix_(test, train)]
# center train and test kernels
kc.fit(train_km)
train_km_c = kc.transform(train_km)
test_km_c = kc.transform(test_km)
train_km_list.append(train_km_c)
test_km_list.append(test_km_c)
if mkl == 'UNIMKL':
wei = UNIMKL(n_km, n_labels)
else:
wei = np.loadtxt(res_f, ndmin=2)
normw = np.linalg.norm(wei)
uni = np.ones(n_km) / np.linalg.norm(np.ones(n_km))
if normw == 0:
wei[:,0] = uni
else:
wei[:,0] = wei[:,0] / normw
train_ckm = np.zeros((n_train,n_train))
for t in range(n_km):
train_ckm += wei[t,0]*train_km_list[t]
# combine train and test kernel using learned weights
test_ckm = np.zeros(test_km_list[0].shape)
for t in range(n_km):
test_ckm = test_ckm + wei[t,0]*test_km_list[t]
AP = OVKR_train_CV(train_ckm, train_y, tags[train])
pred_label = OVKR_test(test_ckm, AP)
pred[test, :] = pred_label
pred_real_f = "../ovkr_result/noisy_pred/%s_cvpred_%s_real_noise_%d.npy" % (data, mkl, nid)
np.save(pred_real_f, pred)
示例5: generate_spike_classes
# 需要導入模塊: from sklearn.preprocessing import KernelCenterer [as 別名]
# 或者: from sklearn.preprocessing.KernelCenterer import transform [as 別名]
if __name__ == "__main__":
classes = generate_spike_classes(1, 2)
train = generate_spike_times(classes)
test = generate_spike_times(classes)
rasterPlot(train)
K = compute_K_matrix(train)
###############################
# N = K.shape[0]
# H = np.eye(N) - np.tile(1./N, [N, N]);
# Kc = np.dot(np.dot(H, K), H)
kcenterer = KernelCenterer() #
kcenterer.fit(K) # Center Kernel Matrix
Kc = kcenterer.transform(K) #
###############################
D, E = eig(Kc)
proj = np.dot(Kc, E[:, 0:2])
################################ Center test
Kt = compute_K_matrix(train, test)
# M = Kt.shape[0]
# A = np.tile(K.sum(axis=0), [M, 1]) / N
# B = np.tile(Kt.sum(axis=1),[N, 1]) /N
# Kc2 = Kt - A - B + K.sum()/ N**2;
Kc2 = kcenterer.transform(Kt)
proj2 = np.dot(Kc2, E[:, 0:2])
# kpca = KernelPCA(kernel="precomputed", n_components=2)
# kpca.fit(Kc)
示例6: KernelECA
# 需要導入模塊: from sklearn.preprocessing import KernelCenterer [as 別名]
# 或者: from sklearn.preprocessing.KernelCenterer import transform [as 別名]
class KernelECA(BaseEstimator, TransformerMixin):
"""Kernel Entropy component analysis (KECA)
Non-linear dimensionality reduction through the use of kernels (see
:ref:`metrics`).
Parameters
----------
n_components: int or None
Number of components. If None, all non-zero components are kept.
kernel: "linear" | "poly" | "rbf" | "sigmoid" | "cosine" | "precomputed"
Kernel.
Default: "linear"
degree : int, default=3
Degree for poly kernels. Ignored by other kernels.
gamma : float, optional
Kernel coefficient for rbf and poly kernels. Default: 1/n_features.
Ignored by other kernels.
coef0 : float, optional
Independent term in poly and sigmoid kernels.
Ignored by other kernels.
kernel_params : mapping of string to any, optional
Parameters (keyword arguments) and values for kernel passed as
callable object. Ignored by other kernels.
eigen_solver: string ['auto'|'dense'|'arpack']
Select eigensolver to use. If n_components is much less than
the number of training samples, arpack may be more efficient
than the dense eigensolver.
tol: float
convergence tolerance for arpack.
Default: 0 (optimal value will be chosen by arpack)
max_iter : int
maximum number of iterations for arpack
Default: None (optimal value will be chosen by arpack)
random_state : int seed, RandomState instance, or None, default : None
A pseudo random number generator used for the initialization of the
residuals when eigen_solver == 'arpack'.
Attributes
----------
lambdas_ :
Eigenvalues of the centered kernel matrix
alphas_ :
Eigenvectors of the centered kernel matrix
dual_coef_ :
Inverse transform matrix
X_transformed_fit_ :
Projection of the fitted data on the kernel entropy components
References
----------
Kernel ECA based on:
(c) Robert Jenssen, University of Tromso, Norway, 2010
R. Jenssen, "Kernel Entropy Component Analysis,"
IEEE Trans. Patt. Anal. Mach. Intel., 32(5), 847-860, 2010.
"""
def __init__(self, n_components=None, kernel="linear",
gamma=None, degree=3, coef0=1, kernel_params=None, eigen_solver='auto',
tol=0, max_iter=None, random_state=None,center=False):
self.n_components = n_components
self._kernel = kernel
self.kernel_params = kernel_params
self.gamma = gamma
self.degree = degree
self.coef0 = coef0
self.eigen_solver = eigen_solver
self.tol = tol
self.max_iter = max_iter
self.random_state = random_state
self._centerer = KernelCenterer()
self.center = center
@property
def _pairwise(self):
return self.kernel == "precomputed"
def _get_kernel(self, X, Y=None):
if callable(self._kernel):
params = self.kernel_params or {}
else:
params = {"gamma": self.gamma,
"degree": self.degree,
"coef0": self.coef0}
return pairwise_kernels(X, Y, metric=self._kernel,
#.........這裏部分代碼省略.........
示例7: ALIGNFSOFT
# 需要導入模塊: from sklearn.preprocessing import KernelCenterer [as 別名]
# 或者: from sklearn.preprocessing.KernelCenterer import transform [as 別名]
def ALIGNFSOFT(kernel_list, ky, y, test_fold, tags):
# Find best upper bound in CV and train on whole data
# Reutrn the weights
y = y.ravel()
n_km = len(kernel_list)
tag = np.array(tags)
tag = tag[tag!=test_fold]
remain_fold = np.unique(tag).tolist()
all_best_c = []
for validate_fold in remain_fold:
train = tag != validate_fold
validate = tag == validate_fold
# train on train fold ,validate on validate_fold.
# Do not use test fold. test fold used in outter cv
ky_train = ky[np.ix_(train, train)]
y_train = y[train]
y_validate = y[validate]
train_km_list = []
validate_km_list = []
n_train = len(y_train)
n_validate = len(y_validate)
for km in kernel_list:
kc = KernelCenterer()
train_km = km[np.ix_(train, train)]
validate_km = km[np.ix_(validate, train)]
# center train and validate kernels
train_km_c = kc.fit_transform(train_km)
train_km_list.append(train_km_c)
validate_km_c = kc.transform(validate_km)
validate_km_list.append(validate_km_c)
# if the label is too biased, SVM CV will fail, just return ALIGNF solution
if np.sum(y_train==1) > n_train-3 or np.sum(y_train==-1) > n_train-3:
return 1e8, ALIGNFSLACK(train_km_list, ky_train, 1e8)
Cs = np.exp2(np.array(range(-9,7))).tolist() + [1e8]
W = np.zeros((n_km, len(Cs)))
for i in xrange(len(Cs)):
W[:,i] = ALIGNFSLACK(train_km_list, ky_train, Cs[i])
W = W / np.linalg.norm(W, 2, 0)
f1 = np.zeros(len(Cs))
for i in xrange(len(Cs)):
train_ckm = np.zeros((n_train,n_train))
validate_ckm = np.zeros((n_validate,n_train))
w = W[:,i]
for j in xrange(n_km):
train_ckm += w[j]*train_km_list[j]
validate_ckm += w[j]*validate_km_list[j]
f1[i] = svm(train_ckm, validate_ckm, y_train, y_validate)
# return the first maximum
maxind = np.argmax(f1)
bestC = Cs[maxind]
all_best_c.append(bestC)
print f1
print "..Best C is", bestC
bestC = np.mean(all_best_c)
print "..Take the average best upper bound", bestC
# use the best upper bound to solve ALIGNFSOFT
return bestC, ALIGNFSLACK(kernel_list, ky, bestC)
示例8: ovkr_mkl
# 需要導入模塊: from sklearn.preprocessing import KernelCenterer [as 別名]
# 或者: from sklearn.preprocessing.KernelCenterer import transform [as 別名]
def ovkr_mkl(kernel_list, labels, mkl, n_folds, dataset, data):
n_sample, n_labels = labels.shape
n_km = len(kernel_list)
tags = np.loadtxt("../data/cv/"+data+".cv")
#tags = np.array(range(n_sample)) % n_folds + 1
#np.random.seed(1234)
#np.random.shuffle(tags)
pred = np.zeros((n_sample, n_labels))
# Run for each fold
for i in range(1,n_folds+1):
print "Test fold %d" %i
res_f = "../ovkr_result/weights/"+dataset+"_fold_%d_%s.weights" % (i,mkl)
# divide data
test = np.array(tags == i)
train = np.array(~test)
train_y = labels[train,:]
test_y = labels[test,:]
n_train = len(train_y)
n_test = len(test_y)
train_km_list = []
test_km_list = []
for km in kernel_list:
kc = KernelCenterer()
train_km = km[np.ix_(train, train)]
test_km = km[np.ix_(test, train)]
# center train and test kernels
kc.fit(train_km)
train_km_c = kc.transform(train_km)
test_km_c = kc.transform(test_km)
train_km_list.append(train_km_c)
test_km_list.append(test_km_c)
if mkl == 'UNIMKL':
wei = UNIMKL(n_km, n_labels)
else:
wei = np.loadtxt(res_f, ndmin=2)
normw = np.linalg.norm(wei)
uni = np.ones(n_km) / np.linalg.norm(np.ones(n_km))
if normw == 0:
wei[:,0] = uni
else:
wei[:,0] = wei[:,0] / normw
train_ckm = np.zeros((n_train,n_train))
for t in range(n_km):
train_ckm += wei[t,0]*train_km_list[t]
# combine train and test kernel using learned weights
test_ckm = np.zeros(test_km_list[0].shape)
for t in range(n_km):
test_ckm = test_ckm + wei[t,0]*test_km_list[t]
AP = OVKR_train_CV(train_ckm, train_y, tags[train])
pred_label = OVKR_test(test_ckm, AP)
pred[test, :] = pred_label
return pred
示例9: svm_mkl
# 需要導入模塊: from sklearn.preprocessing import KernelCenterer [as 別名]
# 或者: from sklearn.preprocessing.KernelCenterer import transform [as 別名]
def svm_mkl(kernel_list, labels, mkl, n_folds, dataset, data):
n_sample, n_labels = labels.shape
n_km = len(kernel_list)
tags = np.loadtxt("../data/cv/"+data+".cv")
pred = np.zeros((n_sample, n_labels))
# Run for each fold
for i in range(1,n_folds+1):
print "Test fold %d" %i
res_f = "../svm_result/weights/"+dataset+"_fold_%d_%s.weights" % (i,mkl)
# divide data
test = np.array(tags == (i+1 if i+1<6 else 1))
train = np.array(~test)
train_y = labels[train,:]
test_y = labels[test,:]
n_train = len(train_y)
n_test = len(test_y)
train_km_list = []
test_km_list = []
for km in kernel_list:
kc = KernelCenterer()
train_km = km[np.ix_(train, train)]
test_km = km[np.ix_(test, train)]
# center train and test kernels
kc.fit(train_km)
train_km_c = kc.transform(train_km)
test_km_c = kc.transform(test_km)
train_km_list.append(train_km_c)
test_km_list.append(test_km_c)
if mkl == 'UNIMKL':
wei = UNIMKL(n_km, n_labels)
else:
wei = np.loadtxt(res_f, ndmin=2)
# Normalized weights
normw = np.linalg.norm(wei, 2, 0)
uni = np.ones(n_km) / np.linalg.norm(np.ones(n_km))
for t in xrange(n_labels):
if normw[t] == 0: # collapsed solution
wei[:,t] = uni
else:
wei[:,t] = wei[:,t] / normw[t]
for j in range(n_labels):
tr_y = train_y[:,j]
te_y = test_y[:,j]
if wei.shape[1] == 1:
wj = wei[:,0]
else:
wj = wei[:,j]
ckm = np.zeros((n_train,n_train))
for t in range(n_km):
ckm = ckm + wj[t]*train_km_list[t]
# combine train and test kernel using learned weights
train_ckm = ckm
test_ckm = np.zeros(test_km_list[0].shape)
for t in range(n_km):
test_ckm = test_ckm + wj[t]*test_km_list[t]
pred_label = svm(train_ckm, test_ckm, tr_y, te_y, tags[train], i)
pred[test, j] = pred_label
return pred
示例10: cls
# 需要導入模塊: from sklearn.preprocessing import KernelCenterer [as 別名]
# 或者: from sklearn.preprocessing.KernelCenterer import transform [as 別名]
def cls(mkl):
for data in datasets:
print "####################"
print '# ',data
print "####################"
# consider labels with more than 2%
t = 0.02
datadir = '../data/'
km_dir = datadir + data + "/"
if data == 'Fingerprint':
kernels = ['PPKr', 'NB','CP2','NI','LB','CPC','RLB','LC','LI','CPK','RLI','CSC']
km_list = []
y = np.loadtxt(km_dir+"y.txt",ndmin=2)
p = np.sum(y==1,0)/float(y.shape[0])
y = y[:,p>t]
for k in kernels:
km_f = datadir + data + ("/%s.txt" % k)
km_list.append(normalize_km(np.loadtxt(km_f)))
pred_f = "../svm_result/pred/%s_cvpred_%s.txt" % (data, mkl)
pred = svm_mkl(km_list, y, mkl, 5, data,data)
np.savetxt(pred_f, pred, fmt="%d")
elif data == 'plant' or data == 'psortPos' or data == 'psortNeg':
y = loadmat(km_dir+"label_%s.mat" % data)['y'].ravel()
km_list = []
fs = commands.getoutput('ls %skern\;substr*.mat' % km_dir).split("\n")
for f in fs:
km = loadmat(f)
km_list.append(km['K'])
fs = commands.getoutput('ls %skern\;phylpro*.mat' % km_dir).split("\n")
for f in fs:
km = loadmat(f)
km_list.append(km['K'])
fs = commands.getoutput('ls %skm_evalue*.mat' % km_dir).split("\n")
for f in fs:
km = loadmat(f)
km_list.append(km['K'])
n_samples = y.shape[0]
n_km = len(km_list)
y_pred = np.zeros(n_samples)
n_labels = 1
tags = np.loadtxt("../data/cv/"+data+".cv")
for fold in range(1,6):
test_ind = np.where(tags == fold)[0]
train_ind = np.where(tags != fold)[0]
train_km_list = []
test_km_list = []
train_y = y[train_ind]
test_y = y[test_ind]
n_train = len(train_ind)
n_test = len(test_ind)
w_f = "../svm_result/weights/"+data+"_fold_%d_%s.weights" % (fold,mkl)
if mkl == 'UNIMKL':
w = UNIMKL(n_km, n_labels).ravel()
else:
w = np.loadtxt(w_f, ndmin=2).ravel()
normw = np.linalg.norm(w, 2, 0)
uni = np.ones(n_km) / np.linalg.norm(np.ones(n_km))
if normw == 0:
w = uni
else:
w = w / normw
for km in km_list:
kc = KernelCenterer()
train_km = km[np.ix_(train_ind, train_ind)]
test_km = km[np.ix_(test_ind, train_ind)]
# center train and test kernels
kc.fit(train_km)
train_km_c = kc.transform(train_km)
test_km_c = kc.transform(test_km)
train_km_list.append(train_km_c)
test_km_list.append(test_km_c)
train_ckm = np.zeros((n_train,n_train))
for t in range(n_km):
train_ckm = train_ckm + w[t]*train_km_list[t]
test_ckm = np.zeros(test_km_list[0].shape)
for t in range(n_km):
test_ckm = test_ckm + w[t]*test_km_list[t]
C_range = [0.01,0.1,1,10,100]
param_grid = dict(C=C_range)
cv = StratifiedShuffleSplit(train_y,n_iter=5,test_size=0.2,random_state=42)
grid = GridSearchCV(SVC(kernel='precomputed'), param_grid=param_grid, cv=cv)
grid.fit(train_ckm, train_y)
bestC = grid.best_params_['C']
svm = SVC(kernel='precomputed', C=bestC)
svm.fit(train_ckm, train_y)
y_pred[test_ind] = svm.predict(test_ckm)
pred_f = "../svm_result/pred/%s_cvpred_%s.txt" % (data, mkl)
np.savetxt(pred_f, y_pred, fmt="%d")
#.........這裏部分代碼省略.........
示例11: KernelCenterer
# 需要導入模塊: from sklearn.preprocessing import KernelCenterer [as 別名]
# 或者: from sklearn.preprocessing.KernelCenterer import transform [as 別名]
plt.xlim(1,np.amax(nComponents))
plt.title('kPCA accuracy')
plt.xlabel('Number of components')
plt.ylabel('accuracy')
plt.xlim([500,1500])
plt.legend (['LDA'],loc='lower right')
plt.grid(True)
if(0):
# K-PCA second round
ktrain = pair.rbf_kernel(Xtrain,Xtrain,gamma)
ktest = pair.rbf_kernel(Xtest,Xtrain,gamma)
kcent = KernelCenterer()
kcent.fit(ktrain)
ktrain = kcent.transform(ktrain)
ktest = kcent.transform(ktest)
kpca = PCA()
kpca.fit_transform(ktrain)
cumvarkPCA2 = np.cumsum(kpca.explained_variance_ratio_[0:220])
# Calculate classifiation scores for each component
nComponents = np.arange(1,nFeatures)
kpcaScores2 = np.zeros((5,np.alen(nComponents)))
for i,n in enumerate(nComponents):
kpca2 = PCA(n_components=n)
kpca2.fit(ktrain)
XtrainT = kpca2.transform(ktrain)
XtestT = kpca2.transform(ktest)
kpcaScores2[:,i] = util.classify(XtrainT,XtestT,labelsTrain,labelsTest)
示例12: KernelPCA
# 需要導入模塊: from sklearn.preprocessing import KernelCenterer [as 別名]
# 或者: from sklearn.preprocessing.KernelCenterer import transform [as 別名]
class KernelPCA(BaseEstimator, TransformerMixin):
"""Kernel Principal component analysis (KPCA)
Non-linear dimensionality reduction through the use of kernels (see
:ref:`metrics`).
Parameters
----------
n_components: int or None
Number of components. If None, all non-zero components are kept.
kernel: "linear" | "poly" | "rbf" | "sigmoid" | "cosine" | "precomputed"
Kernel.
Default: "linear"
degree : int, default=3
Degree for poly kernels. Ignored by other kernels.
gamma : float, optional
Kernel coefficient for rbf and poly kernels. Default: 1/n_features.
Ignored by other kernels.
coef0 : float, optional
Independent term in poly and sigmoid kernels.
Ignored by other kernels.
kernel_params : mapping of string to any, optional
Parameters (keyword arguments) and values for kernel passed as
callable object. Ignored by other kernels.
alpha: int
Hyperparameter of the ridge regression that learns the
inverse transform (when fit_inverse_transform=True).
Default: 1.0
fit_inverse_transform: bool
Learn the inverse transform for non-precomputed kernels.
(i.e. learn to find the pre-image of a point)
Default: False
eigen_solver: string ['auto'|'dense'|'arpack']
Select eigensolver to use. If n_components is much less than
the number of training samples, arpack may be more efficient
than the dense eigensolver.
tol: float
convergence tolerance for arpack.
Default: 0 (optimal value will be chosen by arpack)
max_iter : int
maximum number of iterations for arpack
Default: None (optimal value will be chosen by arpack)
remove_zero_eig : boolean, default=True
If True, then all components with zero eigenvalues are removed, so
that the number of components in the output may be < n_components
(and sometimes even zero due to numerical instability).
When n_components is None, this parameter is ignored and components
with zero eigenvalues are removed regardless.
Attributes
----------
lambdas_ :
Eigenvalues of the centered kernel matrix
alphas_ :
Eigenvectors of the centered kernel matrix
evals_ : array[float], shape=(n_features)
All eigenvalues of centered kernel matrix
evecs_ : array[float, float], shape=(n_features, n_samples)
All eigenvectors of centered kernel matrix
dual_coef_ :
Inverse transform matrix
X_transformed_fit_ :
Projection of the fitted data on the kernel principal components
References
----------
Kernel PCA was introduced in:
Bernhard Schoelkopf, Alexander J. Smola,
and Klaus-Robert Mueller. 1999. Kernel principal
component analysis. In Advances in kernel methods,
MIT Press, Cambridge, MA, USA 327-352.
"""
def __init__(self, n_components=None, kernel="linear",
gamma=None, degree=3, coef0=1, kernel_params=None,
alpha=1.0, fit_inverse_transform=False, eigen_solver='auto',
tol=0, max_iter=None, remove_zero_eig=False):
if fit_inverse_transform and kernel == 'precomputed':
raise ValueError(
"Cannot fit_inverse_transform with a precomputed kernel.")
self.n_components = n_components
self.kernel = kernel
self.kernel_params = kernel_params
#.........這裏部分代碼省略.........