本文整理匯總了Python中sklearn.preprocessing.KernelCenterer.fit_transform方法的典型用法代碼示例。如果您正苦於以下問題:Python KernelCenterer.fit_transform方法的具體用法?Python KernelCenterer.fit_transform怎麽用?Python KernelCenterer.fit_transform使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.preprocessing.KernelCenterer
的用法示例。
在下文中一共展示了KernelCenterer.fit_transform方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: center_normTrace_decomp
# 需要導入模塊: from sklearn.preprocessing import KernelCenterer [as 別名]
# 或者: from sklearn.preprocessing.KernelCenterer import fit_transform [as 別名]
def center_normTrace_decomp(K):
print 'centering kernel'
#### Get transformed features for K_train that DONT snoop when centering, tracing, or eiging#####
Kcent=KernelCenterer()
Ktrain=Kcent.fit_transform(K[:in_samples,:in_samples])
#Ktrain=Ktrain/float(np.trace(Ktrain))
#[EigVals,EigVectors]=scipy.sparse.linalg.eigsh(Ktrain,k=reduced_dimen,which='LM')
[EigVals,EigVectors]=scipy.linalg.eigh(Ktrain,eigvals=(in_samples-reduced_dimen,in_samples-1))
for i in range(len(EigVals)):
if EigVals[i]<=0: EigVals[i]=0
EigVals=np.flipud(np.fliplr(np.diag(EigVals)))
EigVectors=np.fliplr(EigVectors)
Ktrain_decomp=np.dot(EigVectors,scipy.linalg.sqrtm(EigVals))
#### Get transformed features for K_test using K_train implied mapping ####
Kcent=KernelCenterer()
Kfull=Kcent.fit_transform(K)
#Kfull=Kfull/float(np.trace(Kfull))
K_train_test=Kfull[in_samples:,:in_samples]
Ktest_decomp=np.dot(K_train_test,np.linalg.pinv(Ktrain_decomp.T))
####combine mapped train and test vectors and normalize each vector####
Kdecomp=np.vstack((Ktrain_decomp,Ktest_decomp))
print 'doing normalization'
Kdecomp=normalize(Kdecomp,copy=False)
return Kdecomp
示例2: test_center_kernel
# 需要導入模塊: from sklearn.preprocessing import KernelCenterer [as 別名]
# 或者: from sklearn.preprocessing.KernelCenterer import fit_transform [as 別名]
def test_center_kernel():
"""Test that KernelCenterer is equivalent to Scaler in feature space"""
X_fit = np.random.random((5, 4))
scaler = Scaler(with_std=False)
scaler.fit(X_fit)
X_fit_centered = scaler.transform(X_fit)
K_fit = np.dot(X_fit, X_fit.T)
# center fit time matrix
centerer = KernelCenterer()
K_fit_centered = np.dot(X_fit_centered, X_fit_centered.T)
K_fit_centered2 = centerer.fit_transform(K_fit)
assert_array_almost_equal(K_fit_centered, K_fit_centered2)
# center predict time matrix
X_pred = np.random.random((2, 4))
K_pred = np.dot(X_pred, X_fit.T)
X_pred_centered = scaler.transform(X_pred)
K_pred_centered = np.dot(X_pred_centered, X_fit_centered.T)
K_pred_centered2 = centerer.transform(K_pred)
assert_array_almost_equal(K_pred_centered, K_pred_centered2)
示例3: KernelECA
# 需要導入模塊: from sklearn.preprocessing import KernelCenterer [as 別名]
# 或者: from sklearn.preprocessing.KernelCenterer import fit_transform [as 別名]
#.........這裏部分代碼省略.........
"""
def __init__(self, n_components=None, kernel="linear",
gamma=None, degree=3, coef0=1, kernel_params=None, eigen_solver='auto',
tol=0, max_iter=None, random_state=None,center=False):
self.n_components = n_components
self._kernel = kernel
self.kernel_params = kernel_params
self.gamma = gamma
self.degree = degree
self.coef0 = coef0
self.eigen_solver = eigen_solver
self.tol = tol
self.max_iter = max_iter
self.random_state = random_state
self._centerer = KernelCenterer()
self.center = center
@property
def _pairwise(self):
return self.kernel == "precomputed"
def _get_kernel(self, X, Y=None):
if callable(self._kernel):
params = self.kernel_params or {}
else:
params = {"gamma": self.gamma,
"degree": self.degree,
"coef0": self.coef0}
return pairwise_kernels(X, Y, metric=self._kernel,
filter_params=True, **params)
def _fit_transform(self, K):
""" Fit's using kernel K"""
# center kernel
if self.center == True:
K = self._centerer.fit_transform(K)
X_transformed = self.kernelECA(K=K)
self.X_transformed = X_transformed
return K
def fit(self, X, y=None):
"""Fit the model from data in X.
Parameters
----------
X: array-like, shape (n_samples, n_features)
Training vector, where n_samples in the number of samples
and n_features is the number of features.
Returns
-------
self : object
Returns the instance itself.
"""
K = self._get_kernel(X)
self._fit_transform(K)
self.X_fit_ = X
return self
def fit_transform(self, X, y=None, **params):
"""Fit the model from data in X and transform X.
示例4: KernelFisher
# 需要導入模塊: from sklearn.preprocessing import KernelCenterer [as 別名]
# 或者: from sklearn.preprocessing.KernelCenterer import fit_transform [as 別名]
#.........這裏部分代碼省略.........
self.means_ = []
for ind in xrange(n_classes):
Xg = X[y == ind, :]
meang = Xg.mean(0)
self.means_.append(np.asarray(meang))
if self.print_timing: print 'KernelFisher.fit: means took', time.time() - ts
ts = time.time()
PI_diag = np.diag( 1.0*n_samples_perclass ) # shape(PI_diag) = n_classes x n_classes
PI_inv = np.diag( 1.0 / (1.0*n_samples_perclass) ) # shape(PI_inv) = n_classes x n_classes
PI_sqrt_inv = np.sqrt( PI_inv ) # shape(PI_sqrt_inv) = n_classes x n_classes
#H = np.identity(n_samples) - (1.0/(1.0*n_samples))*np.ones((n_samples,n_samples))
E=np.zeros( (n_samples,n_classes) ) # shape(E) = n_samples x n_classes
E[[range(n_samples),y]]=1
E_PIsi = np.dot(E, PI_sqrt_inv)
One_minus_E_Pi_Et = np.identity(n_samples) - np.inner( E, np.inner(PI_diag, E).T ) # shape(One_minus_E_Pi_Et) = n_samples x n_samples
if self.print_timing: print 'KernelFisher.fit: matrices took', time.time() - ts
#####################################################################################################################
#C = HKH = (I - 1/n 1x1.T) K (I - 1/n 1x1.T) = (K - 1xK_mean.T) * (I - 1/n 1x1.T)
# = K - K_meanx1.T - 1xK_mean.T + K_allmean 1x1
# --> which is the same as what self._centerer.fit_transform(C) performs
#
# if use_total_scatter=False,
# then using Sw which is (1-E*Pi*E.T)K(1-E*Pi*E.T)
#####################################################################################################################
ts = time.time()
C = self._get_kernel(X)
K_mean = np.sum(C, axis=1) / (1.0*C.shape[1])
if self.use_total_scatter:
C = self._centerer.fit_transform(C)
else:
C = np.inner( One_minus_E_Pi_Et, np.inner(C, One_minus_E_Pi_Et).T)
if self.print_timing: print 'KernelFisher.fit: Kernel Calculation took', time.time() - ts
ts = time.time()
Uc, Sc, Utc, Sc_norm = self.condensed_svd( C, self.tol, store_singular_vals=True )
if self.print_timing: print 'KernelFisher.fit: Uc, Sc, Utc took', time.time() - ts
ts = time.time()
#scale up sigma to appropriate range of singular values
reg_factor = self.sigma_sqrd * Sc_norm
St_reg_inv = np.inner( Uc, np.inner(np.diag(1.0/(Sc + reg_factor)), Utc.T).T )
if self.print_timing: print 'KernelFisher.fit: St_reg_inv took', time.time() - ts
ts = time.time()
R = np.inner(E_PIsi.T, np.inner(C, np.inner( St_reg_inv, E_PIsi.T ).T ).T )
if self.print_timing: print 'KernelFisher.fit: R took', time.time() - ts
ts = time.time()
Vr, Lr, Vtr, Lr_norm = self.condensed_svd( R, tol=1e-6 )
if self.print_timing: print 'KernelFisher.fit: Vr, Lr, Vtr took', time.time() - ts
ts = time.time()
#####################################################################################################################
#This capital Z is Upsilon.T * H from equation (22)
#####################################################################################################################
#Z = np.inner( np.diag(1.0 / np.sqrt(Lr)), np.inner(Vtr, np.inner(E_PIsi.T, np.inner(C, St_reg_inv.T ).T ).T ).T )
Z = np.inner( np.inner( np.inner( np.inner( np.diag(1.0 / np.sqrt(Lr)), Vtr.T), E_PIsi), C.T), St_reg_inv)
示例5: ALIGNFSOFT
# 需要導入模塊: from sklearn.preprocessing import KernelCenterer [as 別名]
# 或者: from sklearn.preprocessing.KernelCenterer import fit_transform [as 別名]
def ALIGNFSOFT(kernel_list, ky, y, test_fold, tags):
# Find best upper bound in CV and train on whole data
# Reutrn the weights
y = y.ravel()
n_km = len(kernel_list)
tag = np.array(tags)
tag = tag[tag!=test_fold]
remain_fold = np.unique(tag).tolist()
all_best_c = []
for validate_fold in remain_fold:
train = tag != validate_fold
validate = tag == validate_fold
# train on train fold ,validate on validate_fold.
# Do not use test fold. test fold used in outter cv
ky_train = ky[np.ix_(train, train)]
y_train = y[train]
y_validate = y[validate]
train_km_list = []
validate_km_list = []
n_train = len(y_train)
n_validate = len(y_validate)
for km in kernel_list:
kc = KernelCenterer()
train_km = km[np.ix_(train, train)]
validate_km = km[np.ix_(validate, train)]
# center train and validate kernels
train_km_c = kc.fit_transform(train_km)
train_km_list.append(train_km_c)
validate_km_c = kc.transform(validate_km)
validate_km_list.append(validate_km_c)
# if the label is too biased, SVM CV will fail, just return ALIGNF solution
if np.sum(y_train==1) > n_train-3 or np.sum(y_train==-1) > n_train-3:
return 1e8, ALIGNFSLACK(train_km_list, ky_train, 1e8)
Cs = np.exp2(np.array(range(-9,7))).tolist() + [1e8]
W = np.zeros((n_km, len(Cs)))
for i in xrange(len(Cs)):
W[:,i] = ALIGNFSLACK(train_km_list, ky_train, Cs[i])
W = W / np.linalg.norm(W, 2, 0)
f1 = np.zeros(len(Cs))
for i in xrange(len(Cs)):
train_ckm = np.zeros((n_train,n_train))
validate_ckm = np.zeros((n_validate,n_train))
w = W[:,i]
for j in xrange(n_km):
train_ckm += w[j]*train_km_list[j]
validate_ckm += w[j]*validate_km_list[j]
f1[i] = svm(train_ckm, validate_ckm, y_train, y_validate)
# return the first maximum
maxind = np.argmax(f1)
bestC = Cs[maxind]
all_best_c.append(bestC)
print f1
print "..Best C is", bestC
bestC = np.mean(all_best_c)
print "..Take the average best upper bound", bestC
# use the best upper bound to solve ALIGNFSOFT
return bestC, ALIGNFSLACK(kernel_list, ky, bestC)
示例6: KernelPCA
# 需要導入模塊: from sklearn.preprocessing import KernelCenterer [as 別名]
# 或者: from sklearn.preprocessing.KernelCenterer import fit_transform [as 別名]
#.........這裏部分代碼省略.........
alpha=1.0, fit_inverse_transform=False, eigen_solver='auto',
tol=0, max_iter=None, remove_zero_eig=False):
if fit_inverse_transform and kernel == 'precomputed':
raise ValueError(
"Cannot fit_inverse_transform with a precomputed kernel.")
self.n_components = n_components
self.kernel = kernel
self.kernel_params = kernel_params
self.gamma = gamma
self.degree = degree
self.coef0 = coef0
self.alpha = alpha
self.fit_inverse_transform = fit_inverse_transform
self.eigen_solver = eigen_solver
self.remove_zero_eig = remove_zero_eig
self.tol = tol
self.max_iter = max_iter
self._centerer = KernelCenterer()
@property
def _pairwise(self):
return self.kernel == "precomputed"
def _get_kernel(self, X, Y=None):
if callable(self.kernel):
params = self.kernel_params or {}
else:
params = {"gamma": self.gamma,
"degree": self.degree,
"coef0": self.coef0}
return pairwise_kernels(X, Y, metric=self.kernel,
filter_params=True, **params)
def _fit_transform(self, K):
""" Fit's using kernel K"""
# center kernel
K = self._centerer.fit_transform(K)
if self.n_components is None:
n_components = K.shape[0]
else:
n_components = min(K.shape[0], self.n_components)
# compute eigenvectors
if self.eigen_solver == 'auto':
if K.shape[0] > 200 and n_components < 10:
eigen_solver = 'arpack'
else:
eigen_solver = 'dense'
else:
eigen_solver = self.eigen_solver
if eigen_solver == 'dense':
self.lambdas_, self.alphas_ = linalg.eigh(
K, eigvals=(K.shape[0] - n_components, K.shape[0] - 1))
self.evals_, self.evecs_ = linalg.eigh(K)
elif eigen_solver == 'arpack':
self.lambdas_, self.alphas_ = eigsh(K, n_components,
which="LA",
tol=self.tol,
maxiter=self.max_iter)
# sort eigenvectors in descending order
indices = self.lambdas_.argsort()[::-1]
self.lambdas_ = self.lambdas_[indices]
示例7: fit
# 需要導入模塊: from sklearn.preprocessing import KernelCenterer [as 別名]
# 或者: from sklearn.preprocessing.KernelCenterer import fit_transform [as 別名]
def fit(self, X, Y):
"""Fit the KCCA model with two views represented by kernels X and Y.
Parameters
----------
X : array_like, shape = (n_samples, n_features) for data matrix
or shape = (n_samples, n_samples) for kernel matrix.
When both X and Y are kernel matrix, the kernel parameter
should be set to 'precomputed'.
It is considered to be one view of the data.
Y : array_like, shape = (n_samples, n_features) for data matrix
or shape = (n_samples, n_samples) for kernel matrix.
When both X and Y are kernel matrix, the kernel parameter
should be set to 'precomputed'.
It is considered to be another view of the data.
Returns
-------
self : object
Returns the instance itself.
"""
check_consistent_length(X, Y)
X = check_array(X, dtype=np.float, copy=self.copy)
Y = check_array(Y, dtype=np.float, copy=self.copy, ensure_2d=False)
if Y.ndim == 1:
Y = Y.reshape(-1,1)
n = X.shape[0]
p = X.shape[1]
q = Y.shape[1]
if self.n_components < 1 or self.n_components > n:
raise ValueError('Invalid number of components: %d' %
self.n_components)
if self.eigen_solver not in ("auto", "dense", "arpack"):
raise ValueError("Got eigen_solver %s when only 'auto', "
"'dense' and 'arparck' are valid" %
self.algorithm)
if self.kernel == 'precomputed' and (p != n or q != n):
raise ValueError('Invalid kernel matrices dimension')
if not self.pgso and (self.kapa <= 0 or self.kapa >= 1):
raise ValueError('kapa should be in (0, 1) when pgso=False')
if self.pgso and (self.kapa < 0 or self.kapa > 1):
raise ValueError('kapa should be in [0, 1] when pgso=True')
KX = self._get_kernel(X)
KY = self._get_kernel(Y)
if self.center:
kc = KernelCenterer()
self.KXc_ = kc.fit_transform(KX)
self.KYc_ = kc.fit_transform(KY)
else:
self.KXc_ = KX
self.KYc_ = KY
if self.pgso: # use PGSO to decompose kernel matrix
self._fit_pgso(self.KXc_, self.KYc_)
else:
self._fit(self.KXc_, self.KYc_)
return self