本文整理匯總了Python中sklearn.preprocessing.KernelCenterer.fit方法的典型用法代碼示例。如果您正苦於以下問題:Python KernelCenterer.fit方法的具體用法?Python KernelCenterer.fit怎麽用?Python KernelCenterer.fit使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.preprocessing.KernelCenterer
的用法示例。
在下文中一共展示了KernelCenterer.fit方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_kernelcenterer_vs_sklearn
# 需要導入模塊: from sklearn.preprocessing import KernelCenterer [as 別名]
# 或者: from sklearn.preprocessing.KernelCenterer import fit [as 別名]
def test_kernelcenterer_vs_sklearn():
# Compare msmbuilder.preprocessing.KernelCenterer
# with sklearn.preprocessing.KernelCenterer
kernelcentererr = KernelCentererR()
kernelcentererr.fit(np.concatenate(trajs))
kernelcenterer = KernelCenterer()
kernelcenterer.fit(trajs)
y_ref1 = kernelcentererr.transform(trajs[0])
y1 = kernelcenterer.transform(trajs)[0]
np.testing.assert_array_almost_equal(y_ref1, y1)
示例2: cv_mkl
# 需要導入模塊: from sklearn.preprocessing import KernelCenterer [as 別名]
# 或者: from sklearn.preprocessing.KernelCenterer import fit [as 別名]
def cv_mkl(kernel_list, labels, mkl, n_folds, dataset, data):
n_sample, n_labels = labels.shape
n_km = len(kernel_list)
tags = np.loadtxt("../data/cv/"+data+".cv")
for i in range(1,n_folds+1):
print "Test fold %d" %i
res_f = "../svm_result/weights/"+dataset+"_fold_%d_%s.weights" % (i,mkl)
para_f = "../svm_result/upperbound/"+dataset+"_fold_%d_%s.ubound" % (i,mkl)
test = np.array(tags == i)
train = np.array(~test)
train_y = labels[train,:]
test_y = labels[test,:]
n_train = len(train_y)
n_test = len(test_y)
train_km_list = []
# all train kernels are nomalized and centered
for km in kernel_list:
kc = KernelCenterer()
train_km = km[np.ix_(train, train)]
# center train and test kernels
kc.fit(train_km)
train_km_c = kc.transform(train_km)
train_km_list.append(train_km_c)
if mkl == 'UNIMKL':
res = UNIMKL(train_km_list, train_y)
np.savetxt(res_f, res)
if mkl == 'ALIGNF2':
res = alignf2(train_km_list, train_y, data)
np.savetxt(res_f, res)
if mkl.find('ALIGNF2SOFT') != -1:
bestC, res = ALIGNF2SOFT(train_km_list, train_y, i, tags, data)
np.savetxt(res_f, res)
np.savetxt(para_f, bestC)
if mkl == "TSMKL":
W = np.zeros((n_km, n_labels))
for j in xrange(n_labels):
print "..label",j
W[:,j] = TSMKL(train_km_list, train_y[:,j])
res_f = "../svm_result/weights/"+dataset+"_fold_%d_%s.weights" % (i,mkl)
np.savetxt(res_f, W)
示例3: ovkr_mkl
# 需要導入模塊: from sklearn.preprocessing import KernelCenterer [as 別名]
# 或者: from sklearn.preprocessing.KernelCenterer import fit [as 別名]
def ovkr_mkl(kernel_list, labels, mkl, n_folds, dataset, data):
n_sample, n_labels = labels.shape
n_km = len(kernel_list)
tags = np.loadtxt("../data/cv/"+data+".cv")
# Add noise to the output
noise_level = [0.005, 0.010, 0.015, 0.020, 0.025]
for nid in xrange(len(noise_level)):
noi = noise_level[nid]
print "noise", noi, nid
Y = addNoise(labels, noi)
pred = np.zeros((n_sample, n_labels))
pred_bin = np.zeros((n_sample, n_labels))
# Run for each fold
for i in range(1,n_folds+1):
print "Test fold %d" %i
res_f = "../ovkr_result/noisy_weights/"+dataset+"_fold_%d_%s_noise_%d.weights" % (i,mkl, nid)
# divide data
test = np.array(tags == i)
train = np.array(~test)
train_y = Y[train,:]
test_y = Y[test,:]
n_train = len(train_y)
n_test = len(test_y)
train_km_list = []
test_km_list = []
for km in kernel_list:
kc = KernelCenterer()
train_km = km[np.ix_(train, train)]
test_km = km[np.ix_(test, train)]
# center train and test kernels
kc.fit(train_km)
train_km_c = kc.transform(train_km)
test_km_c = kc.transform(test_km)
train_km_list.append(train_km_c)
test_km_list.append(test_km_c)
if mkl == 'UNIMKL':
wei = UNIMKL(n_km, n_labels)
else:
wei = np.loadtxt(res_f, ndmin=2)
normw = np.linalg.norm(wei)
uni = np.ones(n_km) / np.linalg.norm(np.ones(n_km))
if normw == 0:
wei[:,0] = uni
else:
wei[:,0] = wei[:,0] / normw
train_ckm = np.zeros((n_train,n_train))
for t in range(n_km):
train_ckm += wei[t,0]*train_km_list[t]
# combine train and test kernel using learned weights
test_ckm = np.zeros(test_km_list[0].shape)
for t in range(n_km):
test_ckm = test_ckm + wei[t,0]*test_km_list[t]
AP = OVKR_train_CV(train_ckm, train_y, tags[train])
pred_label = OVKR_test(test_ckm, AP)
pred[test, :] = pred_label
pred_real_f = "../ovkr_result/noisy_pred/%s_cvpred_%s_real_noise_%d.npy" % (data, mkl, nid)
np.save(pred_real_f, pred)
示例4: generate_spike_classes
# 需要導入模塊: from sklearn.preprocessing import KernelCenterer [as 別名]
# 或者: from sklearn.preprocessing.KernelCenterer import fit [as 別名]
return K
if __name__ == "__main__":
classes = generate_spike_classes(1, 2)
train = generate_spike_times(classes)
test = generate_spike_times(classes)
rasterPlot(train)
K = compute_K_matrix(train)
###############################
# N = K.shape[0]
# H = np.eye(N) - np.tile(1./N, [N, N]);
# Kc = np.dot(np.dot(H, K), H)
kcenterer = KernelCenterer() #
kcenterer.fit(K) # Center Kernel Matrix
Kc = kcenterer.transform(K) #
###############################
D, E = eig(Kc)
proj = np.dot(Kc, E[:, 0:2])
################################ Center test
Kt = compute_K_matrix(train, test)
# M = Kt.shape[0]
# A = np.tile(K.sum(axis=0), [M, 1]) / N
# B = np.tile(Kt.sum(axis=1),[N, 1]) /N
# Kc2 = Kt - A - B + K.sum()/ N**2;
Kc2 = kcenterer.transform(Kt)
proj2 = np.dot(Kc2, E[:, 0:2])
# kpca = KernelPCA(kernel="precomputed", n_components=2)
示例5: ovkr_mkl
# 需要導入模塊: from sklearn.preprocessing import KernelCenterer [as 別名]
# 或者: from sklearn.preprocessing.KernelCenterer import fit [as 別名]
def ovkr_mkl(kernel_list, labels, mkl, n_folds, dataset, data):
n_sample, n_labels = labels.shape
n_km = len(kernel_list)
tags = np.loadtxt("../data/cv/"+data+".cv")
#tags = np.array(range(n_sample)) % n_folds + 1
#np.random.seed(1234)
#np.random.shuffle(tags)
pred = np.zeros((n_sample, n_labels))
# Run for each fold
for i in range(1,n_folds+1):
print "Test fold %d" %i
res_f = "../ovkr_result/weights/"+dataset+"_fold_%d_%s.weights" % (i,mkl)
# divide data
test = np.array(tags == i)
train = np.array(~test)
train_y = labels[train,:]
test_y = labels[test,:]
n_train = len(train_y)
n_test = len(test_y)
train_km_list = []
test_km_list = []
for km in kernel_list:
kc = KernelCenterer()
train_km = km[np.ix_(train, train)]
test_km = km[np.ix_(test, train)]
# center train and test kernels
kc.fit(train_km)
train_km_c = kc.transform(train_km)
test_km_c = kc.transform(test_km)
train_km_list.append(train_km_c)
test_km_list.append(test_km_c)
if mkl == 'UNIMKL':
wei = UNIMKL(n_km, n_labels)
else:
wei = np.loadtxt(res_f, ndmin=2)
normw = np.linalg.norm(wei)
uni = np.ones(n_km) / np.linalg.norm(np.ones(n_km))
if normw == 0:
wei[:,0] = uni
else:
wei[:,0] = wei[:,0] / normw
train_ckm = np.zeros((n_train,n_train))
for t in range(n_km):
train_ckm += wei[t,0]*train_km_list[t]
# combine train and test kernel using learned weights
test_ckm = np.zeros(test_km_list[0].shape)
for t in range(n_km):
test_ckm = test_ckm + wei[t,0]*test_km_list[t]
AP = OVKR_train_CV(train_ckm, train_y, tags[train])
pred_label = OVKR_test(test_ckm, AP)
pred[test, :] = pred_label
return pred
示例6: svm_mkl
# 需要導入模塊: from sklearn.preprocessing import KernelCenterer [as 別名]
# 或者: from sklearn.preprocessing.KernelCenterer import fit [as 別名]
def svm_mkl(kernel_list, labels, mkl, n_folds, dataset, data):
n_sample, n_labels = labels.shape
n_km = len(kernel_list)
tags = np.loadtxt("../data/cv/"+data+".cv")
pred = np.zeros((n_sample, n_labels))
# Run for each fold
for i in range(1,n_folds+1):
print "Test fold %d" %i
res_f = "../svm_result/weights/"+dataset+"_fold_%d_%s.weights" % (i,mkl)
# divide data
test = np.array(tags == (i+1 if i+1<6 else 1))
train = np.array(~test)
train_y = labels[train,:]
test_y = labels[test,:]
n_train = len(train_y)
n_test = len(test_y)
train_km_list = []
test_km_list = []
for km in kernel_list:
kc = KernelCenterer()
train_km = km[np.ix_(train, train)]
test_km = km[np.ix_(test, train)]
# center train and test kernels
kc.fit(train_km)
train_km_c = kc.transform(train_km)
test_km_c = kc.transform(test_km)
train_km_list.append(train_km_c)
test_km_list.append(test_km_c)
if mkl == 'UNIMKL':
wei = UNIMKL(n_km, n_labels)
else:
wei = np.loadtxt(res_f, ndmin=2)
# Normalized weights
normw = np.linalg.norm(wei, 2, 0)
uni = np.ones(n_km) / np.linalg.norm(np.ones(n_km))
for t in xrange(n_labels):
if normw[t] == 0: # collapsed solution
wei[:,t] = uni
else:
wei[:,t] = wei[:,t] / normw[t]
for j in range(n_labels):
tr_y = train_y[:,j]
te_y = test_y[:,j]
if wei.shape[1] == 1:
wj = wei[:,0]
else:
wj = wei[:,j]
ckm = np.zeros((n_train,n_train))
for t in range(n_km):
ckm = ckm + wj[t]*train_km_list[t]
# combine train and test kernel using learned weights
train_ckm = ckm
test_ckm = np.zeros(test_km_list[0].shape)
for t in range(n_km):
test_ckm = test_ckm + wj[t]*test_km_list[t]
pred_label = svm(train_ckm, test_ckm, tr_y, te_y, tags[train], i)
pred[test, j] = pred_label
return pred
示例7: cls
# 需要導入模塊: from sklearn.preprocessing import KernelCenterer [as 別名]
# 或者: from sklearn.preprocessing.KernelCenterer import fit [as 別名]
def cls(mkl):
for data in datasets:
print "####################"
print '# ',data
print "####################"
# consider labels with more than 2%
t = 0.02
datadir = '../data/'
km_dir = datadir + data + "/"
if data == 'Fingerprint':
kernels = ['PPKr', 'NB','CP2','NI','LB','CPC','RLB','LC','LI','CPK','RLI','CSC']
km_list = []
y = np.loadtxt(km_dir+"y.txt",ndmin=2)
p = np.sum(y==1,0)/float(y.shape[0])
y = y[:,p>t]
for k in kernels:
km_f = datadir + data + ("/%s.txt" % k)
km_list.append(normalize_km(np.loadtxt(km_f)))
pred_f = "../svm_result/pred/%s_cvpred_%s.txt" % (data, mkl)
pred = svm_mkl(km_list, y, mkl, 5, data,data)
np.savetxt(pred_f, pred, fmt="%d")
elif data == 'plant' or data == 'psortPos' or data == 'psortNeg':
y = loadmat(km_dir+"label_%s.mat" % data)['y'].ravel()
km_list = []
fs = commands.getoutput('ls %skern\;substr*.mat' % km_dir).split("\n")
for f in fs:
km = loadmat(f)
km_list.append(km['K'])
fs = commands.getoutput('ls %skern\;phylpro*.mat' % km_dir).split("\n")
for f in fs:
km = loadmat(f)
km_list.append(km['K'])
fs = commands.getoutput('ls %skm_evalue*.mat' % km_dir).split("\n")
for f in fs:
km = loadmat(f)
km_list.append(km['K'])
n_samples = y.shape[0]
n_km = len(km_list)
y_pred = np.zeros(n_samples)
n_labels = 1
tags = np.loadtxt("../data/cv/"+data+".cv")
for fold in range(1,6):
test_ind = np.where(tags == fold)[0]
train_ind = np.where(tags != fold)[0]
train_km_list = []
test_km_list = []
train_y = y[train_ind]
test_y = y[test_ind]
n_train = len(train_ind)
n_test = len(test_ind)
w_f = "../svm_result/weights/"+data+"_fold_%d_%s.weights" % (fold,mkl)
if mkl == 'UNIMKL':
w = UNIMKL(n_km, n_labels).ravel()
else:
w = np.loadtxt(w_f, ndmin=2).ravel()
normw = np.linalg.norm(w, 2, 0)
uni = np.ones(n_km) / np.linalg.norm(np.ones(n_km))
if normw == 0:
w = uni
else:
w = w / normw
for km in km_list:
kc = KernelCenterer()
train_km = km[np.ix_(train_ind, train_ind)]
test_km = km[np.ix_(test_ind, train_ind)]
# center train and test kernels
kc.fit(train_km)
train_km_c = kc.transform(train_km)
test_km_c = kc.transform(test_km)
train_km_list.append(train_km_c)
test_km_list.append(test_km_c)
train_ckm = np.zeros((n_train,n_train))
for t in range(n_km):
train_ckm = train_ckm + w[t]*train_km_list[t]
test_ckm = np.zeros(test_km_list[0].shape)
for t in range(n_km):
test_ckm = test_ckm + w[t]*test_km_list[t]
C_range = [0.01,0.1,1,10,100]
param_grid = dict(C=C_range)
cv = StratifiedShuffleSplit(train_y,n_iter=5,test_size=0.2,random_state=42)
grid = GridSearchCV(SVC(kernel='precomputed'), param_grid=param_grid, cv=cv)
grid.fit(train_ckm, train_y)
bestC = grid.best_params_['C']
svm = SVC(kernel='precomputed', C=bestC)
svm.fit(train_ckm, train_y)
y_pred[test_ind] = svm.predict(test_ckm)
pred_f = "../svm_result/pred/%s_cvpred_%s.txt" % (data, mkl)
np.savetxt(pred_f, y_pred, fmt="%d")
#.........這裏部分代碼省略.........
示例8: KernelCenterer
# 需要導入模塊: from sklearn.preprocessing import KernelCenterer [as 別名]
# 或者: from sklearn.preprocessing.KernelCenterer import fit [as 別名]
plt.plot(nComponents,kpcaldaScores,lw=3)
plt.xlim(1,np.amax(nComponents))
plt.title('kPCA accuracy')
plt.xlabel('Number of components')
plt.ylabel('accuracy')
plt.xlim([500,1500])
plt.legend (['LDA'],loc='lower right')
plt.grid(True)
if(0):
# K-PCA second round
ktrain = pair.rbf_kernel(Xtrain,Xtrain,gamma)
ktest = pair.rbf_kernel(Xtest,Xtrain,gamma)
kcent = KernelCenterer()
kcent.fit(ktrain)
ktrain = kcent.transform(ktrain)
ktest = kcent.transform(ktest)
kpca = PCA()
kpca.fit_transform(ktrain)
cumvarkPCA2 = np.cumsum(kpca.explained_variance_ratio_[0:220])
# Calculate classifiation scores for each component
nComponents = np.arange(1,nFeatures)
kpcaScores2 = np.zeros((5,np.alen(nComponents)))
for i,n in enumerate(nComponents):
kpca2 = PCA(n_components=n)
kpca2.fit(ktrain)
XtrainT = kpca2.transform(ktrain)
XtestT = kpca2.transform(ktest)