當前位置: 首頁>>代碼示例>>Python>>正文


Python MLPRegressor.partial_fit方法代碼示例

本文整理匯總了Python中sklearn.neural_network.MLPRegressor.partial_fit方法的典型用法代碼示例。如果您正苦於以下問題:Python MLPRegressor.partial_fit方法的具體用法?Python MLPRegressor.partial_fit怎麽用?Python MLPRegressor.partial_fit使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.neural_network.MLPRegressor的用法示例。


在下文中一共展示了MLPRegressor.partial_fit方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from sklearn.neural_network import MLPRegressor [as 別名]
# 或者: from sklearn.neural_network.MLPRegressor import partial_fit [as 別名]
class Ann:

    def __init__(self):

        self._nn = MLPRegressor(hidden_layer_sizes=(10,), verbose=False, warm_start=True)
        self._entradas_entrenamiento = []
        self._salidas_esperadas_entrenamiento = []
        self.lambdaCoefficient = 0.9

    def evaluar(self, entrada):
        return self._nn.predict(entrada)

    def agregar_a_entrenamiento(self, tableros, resultado):

        tableros.reverse()
        for i in xrange(len(tableros)):
            tablero, valorEstimado = tableros[i][0], tableros[i][1]
            self._entradas_entrenamiento.append(tablero)
            if i == 0 or True:
                self._salidas_esperadas_entrenamiento.append(resultado.value)
            else:
                valorAAprender = valorEstimado + self.lambdaCoefficient * (self._salidas_esperadas_entrenamiento[i-1] -
                    valorEstimado)
                self._salidas_esperadas_entrenamiento.append(valorAAprender)

    def entrenar(self):
        self._nn.partial_fit(self._entradas_entrenamiento, self._salidas_esperadas_entrenamiento)
        self._entradas_entrenamiento = []
        self._salidas_esperadas_entrenamiento = []

    def almacenar(self):
        pickle.dump(self._nn, open(self.path,'wb'))

    def cargar(self, path, red):
        self.path = path
        if os.path.isfile(path):
            self._nn = pickle.load(open(path, 'rb'))
        else:
            self._nn = red
            tableroVacio = ([EnumCasilla.EMPTY.value for _ in xrange(64)],0)
            self.agregar_a_entrenamiento([tableroVacio], EnumResultado.EMPATE)
            self.entrenar()
開發者ID:gsiriani,項目名稱:MAA,代碼行數:44,代碼來源:JugadorGrupoSimple-no-usar.py

示例2: test_partial_fit_regression

# 需要導入模塊: from sklearn.neural_network import MLPRegressor [as 別名]
# 或者: from sklearn.neural_network.MLPRegressor import partial_fit [as 別名]
def test_partial_fit_regression():
    # Test partial_fit on regression.
    # `partial_fit` should yield the same results as 'fit' for regression.
    X = Xboston
    y = yboston

    for momentum in [0, .9]:
        mlp = MLPRegressor(solver='sgd', max_iter=100, activation='relu',
                           random_state=1, learning_rate_init=0.01,
                           batch_size=X.shape[0], momentum=momentum)
        with warnings.catch_warnings(record=True):
            # catch convergence warning
            mlp.fit(X, y)
        pred1 = mlp.predict(X)
        mlp = MLPRegressor(solver='sgd', activation='relu',
                           learning_rate_init=0.01, random_state=1,
                           batch_size=X.shape[0], momentum=momentum)
        for i in range(100):
            mlp.partial_fit(X, y)

        pred2 = mlp.predict(X)
        assert_almost_equal(pred1, pred2, decimal=2)
        score = mlp.score(X, y)
        assert_greater(score, 0.75)
開發者ID:aniryou,項目名稱:scikit-learn,代碼行數:26,代碼來源:test_mlp.py

示例3: __init__

# 需要導入模塊: from sklearn.neural_network import MLPRegressor [as 別名]
# 或者: from sklearn.neural_network.MLPRegressor import partial_fit [as 別名]
class Ann:
    '''
        Implementación e interfaz de la funcionalidad presentada de la ANN
    '''
    def __init__(self):

        self._nn = MLPRegressor(hidden_layer_sizes=(10,), verbose=False, warm_start=True)
        self._entradas_entrenamiento = []
        self._salidas_esperadas_entrenamiento = []
        # Parámetro de TD-lambda
        self.lambdaCoefficient = 0.9

    def evaluar(self, entrada):
        '''
            Devuelve la evaluación de la red para la entrada
        '''
        return self._nn.predict(entrada)

    def agregar_a_entrenamiento(self, tableros, resultado):
        '''
            Incorpora los datos de la partida a los ejemplos de entrenamiento
        '''

        # Presento la partida de adelante para atrás
        tableros.reverse()
        for i in xrange(len(tableros)):
            # Representación del tablero, Valor estimado
            tablero, valorEstimado = tableros[i][0], tableros[i][1]
            self._entradas_entrenamiento.append(tablero)
            if i == 0 or True:
                # Si es el resultado final, utilizo como salida esperada el resultado de la partida
                self._salidas_esperadas_entrenamiento.append(resultado.value)
            else:
                # El valor a aprender dado por según TD-lambda
                valorAAprender = valorEstimado + self.lambdaCoefficient * (
                    self._salidas_esperadas_entrenamiento[i - 1] - valorEstimado)
                self._salidas_esperadas_entrenamiento.append(valorAAprender)

    def entrenar(self):
        '''
            Aplico el entrenamiento a partir de los datos almacenados
        '''
        self._nn.partial_fit(self._entradas_entrenamiento, self._salidas_esperadas_entrenamiento)
        self._entradas_entrenamiento = []
        self._salidas_esperadas_entrenamiento = []

    def almacenar(self):
        '''
            Serializo y persisto la red
        '''
        pickle.dump(self._nn, open(self.path, 'wb'))

    def cargar(self, path, red):
        '''
            Deserealizo o creo una nueva red
        '''
        self.path = path
        if os.path.isfile(path):
            # Si el archivo especificado existe, deserealizo la red
            self._nn = pickle.load(open(path, 'rb'))
        else:
            # Si no, inicializo la red especificada
            self._nn = red
            tableroVacio = ([EnumCasilla.EMPTY.value for _ in xrange(64)], 0)
            self.agregar_a_entrenamiento([tableroVacio], EnumResultado.EMPATE)
            self.entrenar()
開發者ID:gsiriani,項目名稱:MAA,代碼行數:68,代碼來源:JugadorGrupo3.py


注:本文中的sklearn.neural_network.MLPRegressor.partial_fit方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。