當前位置: 首頁>>代碼示例>>Python>>正文


Python neural_network.MLPRegressor類代碼示例

本文整理匯總了Python中sklearn.neural_network.MLPRegressor的典型用法代碼示例。如果您正苦於以下問題:Python MLPRegressor類的具體用法?Python MLPRegressor怎麽用?Python MLPRegressor使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了MLPRegressor類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: regression

def regression(N, P):
    assert len(N) == len(P)
    
    clf = MLPRegressor(hidden_layer_sizes=(15, ), activation='relu', algorithm='adam', alpha=0.0001)
    
    clf.fit (N, P)
    return clf
開發者ID:JessMcintosh,項目名稱:SonoGestures,代碼行數:7,代碼來源:NNRegCross.py

示例2: _create_first_population

 def _create_first_population(self):
     self._current_population = []
     for _ in range(self._n_individuals):
         mlp = MLPRegressor(hidden_layer_sizes = self._nn_architecture, alpha=10**-10, max_iter=1)
         mlp.fit([np.random.randn(self._n_features)], [np.random.randn(self._n_actions)])
         mlp.out_activation_ = 'softmax'
         self._current_population.append([mlp,0])
開發者ID:fritjofwolf,項目名稱:RL2048,代碼行數:7,代碼來源:deepneuroevolution_bot.py

示例3: construct_train

def construct_train(train_length, **kwargs):
    """
    Train and test model with given input
    window and number of neurons in layer
    """
    start_cur_postion = 0
    steps, steplen = observations.size/(2 * train_length), train_length

    if 'hidden_layer' in kwargs:
        network = MLPRegressor(hidden_layer_sizes=kwargs['hidden_layer'])
    else:
        network = MLPRegressor()

    quality = []

    # fit model - configure parameters
    network.fit(observations[start_cur_postion:train_length][:, 1].reshape(1, train_length),
                observations[:, 1][start_cur_postion:train_length].reshape(1, train_length))

    parts = []

    # calculate predicted values
    # for each step add all predicted values to a list
    # TODO: add some parallelism here
    for i in xrange(0, steps):
        parts.append(network.predict(observations[start_cur_postion:train_length][:, 1]))
        start_cur_postion += steplen
        train_length += steplen

    # estimate model quality using 
    result = np.array(parts).flatten().tolist()
    for valnum, value in enumerate(result):
        quality.append((value - observations[valnum][1])**2)

    return sum(quality)/len(quality)
開發者ID:AntonKorobkov,項目名稱:HW_3,代碼行數:35,代碼來源:homework_3_Korobkov.py

示例4: mlp_bench

def mlp_bench(x_train, y_train, x_test, fh):
    """
    Forecasts using a simple MLP which 6 nodes in the hidden layer

    :param x_train: train input data
    :param y_train: target values for training
    :param x_test: test data
    :param fh: forecasting horizon
    :return:
    """
    y_hat_test = []

    model = MLPRegressor(hidden_layer_sizes=6, activation='identity', solver='adam',
                         max_iter=100, learning_rate='adaptive', learning_rate_init=0.001,
                         random_state=42)
    model.fit(x_train, y_train)

    last_prediction = model.predict(x_test)[0]
    for i in range(0, fh):
        y_hat_test.append(last_prediction)
        x_test[0] = np.roll(x_test[0], -1)
        x_test[0, (len(x_test[0]) - 1)] = last_prediction
        last_prediction = model.predict(x_test)[0]

    return np.asarray(y_hat_test)
開發者ID:KaterinaKou,項目名稱:M4-methods,代碼行數:25,代碼來源:ML_benchmarks.py

示例5: test_multioutput_regression

def test_multioutput_regression():
    # Test that multi-output regression works as expected
    X, y = make_regression(n_samples=200, n_targets=5)
    mlp = MLPRegressor(solver='lbfgs', hidden_layer_sizes=50, max_iter=200,
                       random_state=1)
    mlp.fit(X, y)
    assert_greater(mlp.score(X, y), 0.9)
開發者ID:aniryou,項目名稱:scikit-learn,代碼行數:7,代碼來源:test_mlp.py

示例6: test_lbfgs_regression

def test_lbfgs_regression():
    # Test lbfgs on the boston dataset, a regression problems."""
    X = Xboston
    y = yboston
    for activation in ACTIVATION_TYPES:
        mlp = MLPRegressor(algorithm='l-bfgs', hidden_layer_sizes=50,
                           max_iter=150, shuffle=True, random_state=1,
                           activation=activation)
        mlp.fit(X, y)
        assert_greater(mlp.score(X, y), 0.95)
開發者ID:0664j35t3r,項目名稱:scikit-learn,代碼行數:10,代碼來源:test_mlp.py

示例7: GetOptimalCLF2

def GetOptimalCLF2(train_x,train_y,rand_starts = 8):
    '''
    Gets the optimal CLF function based on fixed settings
    
    Parameters
    ------------------------
    train_x - np.array
        Training feature vectors
    train_y - np.array
        Training label vectors
    rand_starts - int
        Number of random starts to do
        Default - 8 for 95% confidence and best 30%
    
    Returns
    ------------------------
    max_clf - sklearn function
        Optimal trained artificial neuron network
    '''
    
    #### Get number of feature inputs of training vector
    n_input = train_x.shape[1]
    
    #### Set initial loss value
    min_loss = 1e10
    
    #### Perform number of trainings according to random start set
    for i in range(rand_starts):
        
        #### Print current status
        print "Iteration number {}".format(i+1)
        
        #### Initialize ANN network
        clf = MLPRegressor(hidden_layer_sizes = (int(round(2*np.sqrt(n_input),0)),1), activation = 'logistic',solver = 'sgd', 
                           learning_rate = 'adaptive', max_iter = 100000000,tol = 1e-10,
                           early_stopping = True, validation_fraction = 1/3.)
        
        #### Fit data
        clf.fit(train_x,train_y)
        
        #### Get current loss
        cur_loss = clf.loss_
        
        #### Save current clf if loss is minimum
        if cur_loss < min_loss:
            
            #### Set min_loss to a new value
            min_loss = cur_loss
            
            #### Set max_clf to new value
            max_clf = clf
    
    return max_clf
開發者ID:leolorenzoii,項目名稱:Development-Codes,代碼行數:53,代碼來源:SubsurfacePredictionANN.py

示例8: MLP_Regressor

def MLP_Regressor(train_x, train_y):

    clf = MLPRegressor(  alpha=1e-05,
           batch_size='auto', beta_1=0.9, beta_2=0.999, early_stopping=False,
           epsilon=1e-08, hidden_layer_sizes=([8,8]), learning_rate='constant',
           learning_rate_init=0.01, max_iter=500, momentum=0.9,
           nesterovs_momentum=True, power_t=0.5, random_state=1, shuffle=True,
           tol=0.0001, validation_fraction=0.1, verbose=False,
           warm_start=False)
    clf.fit(train_x, train_y)
    #score = metrics.accuracy_score(clf.predict((train_x)), (train_y))
    #print(score)
    return clf
開發者ID:licheng5625,項目名稱:coder,代碼行數:13,代碼來源:NNsklean_mult.py

示例9: test_lbfgs_regression

def test_lbfgs_regression():
    # Test lbfgs on the boston dataset, a regression problems.
    X = Xboston
    y = yboston
    for activation in ACTIVATION_TYPES:
        mlp = MLPRegressor(solver='lbfgs', hidden_layer_sizes=50,
                           max_iter=150, shuffle=True, random_state=1,
                           activation=activation)
        mlp.fit(X, y)
        if activation == 'identity':
            assert_greater(mlp.score(X, y), 0.84)
        else:
            # Non linear models perform much better than linear bottleneck:
            assert_greater(mlp.score(X, y), 0.95)
開發者ID:aniryou,項目名稱:scikit-learn,代碼行數:14,代碼來源:test_mlp.py

示例10: __init__

    def __init__(self):

        self._nn = MLPRegressor(hidden_layer_sizes=(10,), verbose=False, warm_start=True)
        self._entradas_entrenamiento = []
        self._salidas_esperadas_entrenamiento = []
        # Parámetro de TD-lambda
        self.lambdaCoefficient = 0.9
開發者ID:gsiriani,項目名稱:MAA,代碼行數:7,代碼來源:JugadorGrupo3.py

示例11: __init__

    def __init__(self, num_inputs, num_outputs):
        self.nx = num_inputs
        self.ny = num_outputs
        self.net = MLPRegressor(hidden_layer_sizes=(50, 10),
                                max_iter=1,
                                algorithm='sgd',
                                learning_rate='constant',
                                learning_rate_init=0.001,
                                warm_start=True,
                                momentum=0.9,
                                nesterovs_momentum=True
                                )

        self.initialize_network()

        # set experience replay
        self.mbsize = 128 # mini-batch size
        self.er_s = []
        self.er_a = []
        self.er_r = []
        self.er_done = []
        self.er_sp = []

        self.er_size = 2000  # total size of mb, impliment as queue
        self.whead = 0  # write head
開發者ID:aravindr93,項目名稱:RL-tasks,代碼行數:25,代碼來源:play_agent.py

示例12: train_model

def train_model(x_train, y_train, alpha=1e-3, hid_layers=[512], max_iter=100):
    """
    Train model on training data.
    :param x_train: training examples
    :param y_train: target variables
    :param alpha: L2 regularization coefficient
    :param hid_layers: hidden layer sizes
    :param max_iter: maximum number of iterations in L-BFGS optimization
    :return a model trained with neuron network
    """
    nn_model = MLPRegressor(solver='lbgfs', hidden_layer_sizes=hid_layers, 
                            alpha=alpha, max_iter=max_iter, 
                            activation="relu", random_state=1)
    nn_model.fit(x_train, y_train)
    
    return nn_model
開發者ID:minhitbk,項目名稱:data-science,代碼行數:16,代碼來源:ETL_Modeling.py

示例13: train

 def train(self):
     print("DEB Training with TSnew")
     self.MLP = MLPRegressor(activation='relu', alpha=1e-05, batch_size='auto', beta_1=0.9,
                              beta_2=0.999, early_stopping=False, epsilon=1e-08,
                              hidden_layer_sizes=len(self.TSnew_Y.columns), learning_rate='constant',
                              learning_rate_init=0.001, max_iter=200, momentum=0.9,
                              nesterovs_momentum=True, power_t=0.5, random_state=1, shuffle=True,
                              solver='lbfgs', tol=0.0001, validation_fraction=0.1, verbose=False,
                              warm_start=False)
     self.MLP.fit(self.TSnew_X, self.TSnew_Y)
開發者ID:HerrAugust,項目名稱:EserciziUni,代碼行數:10,代碼來源:NeuralNetwork.py

示例14: __init__

class Ann:

    def __init__(self):

        self._nn = MLPRegressor(hidden_layer_sizes=(10,), verbose=False, warm_start=True)
        self._entradas_entrenamiento = []
        self._salidas_esperadas_entrenamiento = []
        self.lambdaCoefficient = 0.9

    def evaluar(self, entrada):
        return self._nn.predict(entrada)

    def agregar_a_entrenamiento(self, tableros, resultado):

        tableros.reverse()
        for i in xrange(len(tableros)):
            tablero, valorEstimado = tableros[i][0], tableros[i][1]
            self._entradas_entrenamiento.append(tablero)
            if i == 0 or True:
                self._salidas_esperadas_entrenamiento.append(resultado.value)
            else:
                valorAAprender = valorEstimado + self.lambdaCoefficient * (self._salidas_esperadas_entrenamiento[i-1] -
                    valorEstimado)
                self._salidas_esperadas_entrenamiento.append(valorAAprender)

    def entrenar(self):
        self._nn.partial_fit(self._entradas_entrenamiento, self._salidas_esperadas_entrenamiento)
        self._entradas_entrenamiento = []
        self._salidas_esperadas_entrenamiento = []

    def almacenar(self):
        pickle.dump(self._nn, open(self.path,'wb'))

    def cargar(self, path, red):
        self.path = path
        if os.path.isfile(path):
            self._nn = pickle.load(open(path, 'rb'))
        else:
            self._nn = red
            tableroVacio = ([EnumCasilla.EMPTY.value for _ in xrange(64)],0)
            self.agregar_a_entrenamiento([tableroVacio], EnumResultado.EMPATE)
            self.entrenar()
開發者ID:gsiriani,項目名稱:MAA,代碼行數:42,代碼來源:JugadorGrupoSimple-no-usar.py

示例15: _create_new_nn

 def _create_new_nn(self, weights, biases):
     mlp = MLPRegressor(hidden_layer_sizes = self._nn_architecture, alpha=10**-10, max_iter=1)
     mlp.fit([np.random.randn(self._n_features)], [np.random.randn(self._n_actions)])
     mlp.coefs_ = weights
     mlp.intercepts_ = biases
     mlp.out_activation_ = 'softmax'
     return mlp
開發者ID:fritjofwolf,項目名稱:RL2048,代碼行數:7,代碼來源:deepneuroevolution_bot.py


注:本文中的sklearn.neural_network.MLPRegressor類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。