當前位置: 首頁>>代碼示例>>Python>>正文


Python KNeighborsClassifier.predict方法代碼示例

本文整理匯總了Python中sklearn.neighbors.classification.KNeighborsClassifier.predict方法的典型用法代碼示例。如果您正苦於以下問題:Python KNeighborsClassifier.predict方法的具體用法?Python KNeighborsClassifier.predict怎麽用?Python KNeighborsClassifier.predict使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.neighbors.classification.KNeighborsClassifier的用法示例。


在下文中一共展示了KNeighborsClassifier.predict方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from sklearn.neighbors.classification import KNeighborsClassifier [as 別名]
# 或者: from sklearn.neighbors.classification.KNeighborsClassifier import predict [as 別名]
class PatchedRawModel:
    def __init__(self):
        self.baseModel = RawModel()
        self.model49 = KNeighborsClassifier(n_neighbors=10)
        self.model35 = KNeighborsClassifier(n_neighbors=10)
    
    def fit(self, trainExamples):
        self.baseModel.fit(trainExamples)

        X49 = vstack ( [reshape(x.X, (1, x.WIDTH * x.HEIGHT)) for x in trainExamples if x.Y in [4, 9]] )
        Y49 = [x.Y for x in trainExamples if x.Y in [4, 9]]
        self.model49.fit(X49, Y49)

        X35 = vstack ( [reshape(x.X, (1, x.WIDTH * x.HEIGHT)) for x in trainExamples if x.Y in [3, 5]] )
        Y35 = [x.Y for x in trainExamples if x.Y in [3, 5]]
        self.model35.fit(X35, Y35)

    def predict(self, examples):
        basePredictions = self.baseModel.predict(examples)

        for (x, y, i) in zip(examples, basePredictions, range(0, len(examples))):
            if y in [4, 9]:
                specializedPrediction = self.model49.predict(reshape(x.X, (1, x.WIDTH * x.HEIGHT)))
                if specializedPrediction != y:
                    basePredictions[i] = specializedPrediction
            elif y in [3, 5]:
                specializedPrediction = self.model35.predict(reshape(x.X, (1, x.WIDTH * x.HEIGHT)))
                if specializedPrediction != y:
                    basePredictions[i] = specializedPrediction

        return basePredictions
開發者ID:lewellen,項目名稱:digit-recognizer,代碼行數:33,代碼來源:rawModel.py

示例2: compute_cnn

# 需要導入模塊: from sklearn.neighbors.classification import KNeighborsClassifier [as 別名]
# 或者: from sklearn.neighbors.classification.KNeighborsClassifier import predict [as 別名]
def compute_cnn(X, y):

  "condenced nearest neighbor. the cnn removes reduntant instances, maintaining the samples in the decision boundaries."

  classifier = KNeighborsClassifier(n_neighbors=3)

  prots_s = []
  labels_s = []

  classes = np.unique(y)
  classes_ = classes

  for cur_class in classes:
    mask = y == cur_class
    insts = X[mask]
    prots_s = prots_s + [insts[np.random.randint(0, insts.shape[0])]]
    labels_s = labels_s + [cur_class]
    
  classifier.fit(prots_s, labels_s)
  for sample, label in zip(X, y):
    if classifier.predict(sample) != [label]:
      prots_s = prots_s + [sample]
      labels_s = labels_s + [label]
      classifier.fit(prots_s, labels_s)

  X_ = np.asarray(prots_s)
  y_ = np.asarray(labels_s)
  reduction_ = 1.0 - float(len(y_)/len(y))
  print reduction_
開發者ID:guilhermepaiva,項目名稱:mlstuffs,代碼行數:31,代碼來源:cnn.py

示例3: evaluate

# 需要導入模塊: from sklearn.neighbors.classification import KNeighborsClassifier [as 別名]
# 或者: from sklearn.neighbors.classification.KNeighborsClassifier import predict [as 別名]
def evaluate(Xtra, ytra, Xtst, ytst, k=1, positive_label=1):
    knn = KNeighborsClassifier(n_neighbors=k, algorithm='brute')
    knn.fit(Xtra, ytra)

    y_true = ytst
    y_pred = knn.predict(Xtst)

    return evaluate_results(y_true, y_pred, positive_label=positive_label)
開發者ID:dvro,項目名稱:ml,代碼行數:10,代碼來源:metrics.py

示例4: compute_enn

# 需要導入模塊: from sklearn.neighbors.classification import KNeighborsClassifier [as 別名]
# 或者: from sklearn.neighbors.classification.KNeighborsClassifier import predict [as 別名]
def compute_enn(X, y):
  """
  the edited nearest neighbors removes the instances in the boundaries, maintaining reduntant samples
  """

  classifier = KNeighborsClassifier(n_neighbors=3)

  classes = np.unique(y)
  classes_ = classes

  mask = np.zeros(y.size, dtype=bool)
  classifier.fit(X, y)

  for i in xrange(y.size):
    sample, label = X[i], y[i]
    if classifier.predict(sample) == [label]:
      mask[i] = not mask[i]

  X_ = np.asarray(X[mask])
  y_ = np.asarray(y[mask])
  reduction_ = 1.0 - float(len(y_)) / len(y)
  print reduction_
開發者ID:guilhermepaiva,項目名稱:mlstuffs,代碼行數:24,代碼來源:enn.py

示例5: ENN

# 需要導入模塊: from sklearn.neighbors.classification import KNeighborsClassifier [as 別名]
# 或者: from sklearn.neighbors.classification.KNeighborsClassifier import predict [as 別名]
class ENN(InstanceReductionMixin):

    """Edited Nearest Neighbors.

    The Edited Nearest Neighbors  removes the instances in de 
    boundaries, maintaining redudant samples.

    Parameters
    ----------
    n_neighbors : int, optional (default = 3)
        Number of neighbors to use by default for :meth:`k_neighbors` queries.

    Attributes
    ----------
    `X_` : array-like, shape = [indeterminated, n_features]
        Selected prototypes.

    `y_` : array-like, shape = [indeterminated]
        Labels of the selected prototypes.

    `reduction_` : float, percentual of reduction.

    Examples
    --------
    >>> from protopy.selection.enn import ENN
    >>> import numpy as np
    >>> X = np.array([[-1, 0], [-0.8, 1], [-0.8, -1], [-0.5, 0] , [0.5, 0], [1, 0], [0.8, 1], [0.8, -1]])
    >>> y = np.array([1, 1, 1, 2, 1, 2, 2, 2])
    >>> editednn = ENN()
    >>> editednn.fit(X, y)
    ENN(n_neighbors=3)
    >>> print(editednn.predict([[-0.6, 0.6]]))
    [1]
    >>> print editednn.reduction_
    0.75

    See also
    --------
    sklearn.neighbors.KNeighborsClassifier: nearest neighbors classifier

    References
    ----------
    Ruiqin Chang, Zheng Pei, and Chao Zhang. A modified editing k-nearest
    neighbor rule. JCP, 6(7):1493–1500, 2011.

    """

    def __init__(self, n_neighbors=3):
        self.n_neighbors = n_neighbors
        self.classifier = None


    def reduce_data(self, X, y):
        if self.classifier == None:
            self.classifier = KNeighborsClassifier(n_neighbors=self.n_neighbors)
        if self.classifier.n_neighbors != self.n_neighbors:
            self.classifier.n_neighbors = self.n_neighbors

        X, y = check_arrays(X, y, sparse_format="csr")

        classes = np.unique(y)
        self.classes_ = classes

        if self.n_neighbors >= len(X):
            self.X_ = np.array(X)
            self.y_ = np.array(y)
            self.reduction_ = 0.0

        mask = np.zeros(y.size, dtype=bool)

        tmp_m = np.ones(y.size, dtype=bool)
        for i in xrange(y.size):
            tmp_m[i] = not tmp_m[i]
            self.classifier.fit(X[tmp_m], y[tmp_m])
            sample, label = X[i], y[i]

            if self.classifier.predict(sample) == [label]:
                mask[i] = not mask[i]

            tmp_m[i] = not tmp_m[i]

        self.X_ = np.asarray(X[mask])
        self.y_ = np.asarray(y[mask])
        self.reduction_ = 1.0 - float(len(self.y_)) / len(y)
        return self.X_, self.y_
開發者ID:viisar,項目名稱:scikit-protopy,代碼行數:87,代碼來源:enn.py

示例6: knn_score

# 需要導入模塊: from sklearn.neighbors.classification import KNeighborsClassifier [as 別名]
# 或者: from sklearn.neighbors.classification.KNeighborsClassifier import predict [as 別名]
def knn_score(X, y, neighbors):
    knn5 = KNeighborsClassifier(n_neighbors=neighbors)
    knn5.fit(X, y)
    y_pred = knn5.predict(X)
    print "KNN{} accuracy_score: {}".format(neighbors,
                                            metrics.accuracy_score(y, y_pred))
開發者ID:laurogama,項目名稱:mlpython,代碼行數:8,代碼來源:main.py

示例7: CNN

# 需要導入模塊: from sklearn.neighbors.classification import KNeighborsClassifier [as 別名]
# 或者: from sklearn.neighbors.classification.KNeighborsClassifier import predict [as 別名]
class CNN(InstanceReductionMixin):
    """Condensed Nearest Neighbors.

    Each class is represented by a set of prototypes, with test samples
    classified to the class with the nearest prototype.
    The Condensed Nearest Neighbors removes the redundant instances,
    maintaining the samples in the decision boundaries.

    Parameters
    ----------
    n_neighbors : int, optional (default = 1)
        Number of neighbors to use by default for :meth:`k_neighbors` queries.

    Attributes
    ----------
    `prototypes_` : array-like, shape = [indeterminated, n_features]
        Selected prototypes.

    `labels_` : array-like, shape = [indeterminated]
        Labels of the selected prototypes.

    `reduction_` : float, percentual of reduction.

    Examples
    --------
    >>> from protopy.selection.cnn import CNN
    >>> import numpy as np
    >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
    >>> y = np.array([1, 1, 1, 2, 2, 2])
    >>> cnn = CNN()
    >>> cnn.fit(X, y)
    CNN(n_neighbors=1)
    >>> print(cnn.predict([[-0.8, -1]]))
    [1]

    See also
    --------
    sklearn.neighbors.KNeighborsClassifier: nearest neighbors classifier

    Notes
    -----
    The Condensed Nearest Neighbor is one the first prototype selection
    technique in literature.

    References
    ----------
    P. E. Hart, The condensed nearest neighbor rule, IEEE Transactions on 
    Information Theory 14 (1968) 515–516.

    """

    def __init__(self, n_neighbors=1):
        self.n_neighbors = n_neighbors
        self.classifier = None

    def reduce_data(self, X, y):
        
        X, y = check_X_y(X, y, accept_sparse="csr")

        if self.classifier == None:
            self.classifier = KNeighborsClassifier(n_neighbors=self.n_neighbors)

        prots_s = []
        labels_s = []

        classes = np.unique(y)
        self.classes_ = classes

        for cur_class in classes:
            mask = y == cur_class
            insts = X[mask]
            prots_s = prots_s + [insts[np.random.randint(0, insts.shape[0])]]
            labels_s = labels_s + [cur_class]


        self.classifier.fit(prots_s, labels_s)
        for sample, label in zip(X, y):
            if self.classifier.predict(sample) != [label]:
                prots_s = prots_s + [sample]
                labels_s = labels_s + [label]
                self.classifier.fit(prots_s, labels_s)
       
        self.X_ = np.asarray(prots_s)
        self.y_ = np.asarray(labels_s)
        self.reduction_ = 1.0 - float(len(self.y_))/len(y)
        return self.X_, self.y_
開發者ID:antonlarin,項目名稱:scikit-protopy,代碼行數:88,代碼來源:cnn.py

示例8: InstanceReductionMixin

# 需要導入模塊: from sklearn.neighbors.classification import KNeighborsClassifier [as 別名]
# 或者: from sklearn.neighbors.classification.KNeighborsClassifier import predict [as 別名]
class InstanceReductionMixin(InstanceReductionBase, ClassifierMixin):

    """Mixin class for all instance reduction techniques"""


    def set_classifier(self):
        """Sets the classified to be used in the instance reduction process
            and classification.

        Parameters
        ----------
        classifier : classifier, following the KNeighborsClassifier style
            (default = KNN)

        y : array-like, shape = [n_samples]
            Labels for X.

        Returns
        -------
        P : array-like, shape = [indeterminated, n_features]
            Resulting training set.

        q : array-like, shape = [indertaminated]
            Labels for P
        """

        self.classifier = classifier


    def reduce_data(self, X, y):
        """Perform the instance reduction procedure on the given training data.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            Training set.0

        y : array-like, shape = [n_samples]
            Labels for X.

        Returns
        -------
        X_ : array-like, shape = [indeterminated, n_features]
            Resulting training set.

        y_ : array-like, shape = [indertaminated]
            Labels for X_
        """
        pass
    
    def get_prototypes(self):
        return self.X_, self.y_

    def fit(self, X, y, reduce_data=True):
        """
        Fit the InstanceReduction model according to the given training data.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = [n_samples, n_features]
            Training vector, where n_samples in the number of samples and
            n_features is the number of features.
            Note that centroid shrinking cannot be used with sparse matrices.
        y : array, shape = [n_samples]
            Target values (integers)
        reduce_data : bool, flag indicating if the reduction would be performed
        """
        self.X = X
        self.y = y
        self.labels = set(y)
        self.prototypes = None
        self.prototypes_labels = None
        self.reduction_ratio = 0.0

        if reduce_data:
            self.reduce_data(X, y)

        return self

    def predict(self, X, n_neighbors=1):
        """Perform classification on an array of test vectors X.

        The predicted class C for each sample in X is returned.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]

        Returns
        -------
        C : array, shape = [n_samples]

        Notes
        -----
        The default prediction is using KNeighborsClassifier, if the
        instance reducition algorithm is to be performed with another
        classifier, it should be explicited overwritten and explained
        in the documentation.
        """
        X = atleast2d_or_csr(X)
#.........這裏部分代碼省略.........
開發者ID:dvro,項目名稱:ml,代碼行數:103,代碼來源:baseNew.py

示例9: SSMA

# 需要導入模塊: from sklearn.neighbors.classification import KNeighborsClassifier [as 別名]
# 或者: from sklearn.neighbors.classification.KNeighborsClassifier import predict [as 別名]
class SSMA(InstanceReductionMixin):
    """Steady State Memetic Algorithm

    The Steady-State Memetic Algorithm is an evolutionary prototype
    selection algorithm. It uses a memetic algorithm in order to 
    perform a local search in the code.

    Parameters
    ----------
    n_neighbors : int, optional (default = 3)
        Number of neighbors to use by default for :meth:`k_neighbors` queries.

    alpha   : float (default = 0.6)
        Parameter that ponderates the fitness function.

    max_loop    : int (default = 1000)
        Number of maximum loops performed by the algorithm.

    threshold   : int (default = 0)
        Threshold that regulates the substitution condition;

    chromosomes_count: int (default = 10)
        number of chromosomes used to find the optimal solution.

    Attributes
    ----------
    `X_` : array-like, shape = [indeterminated, n_features]
        Selected prototypes.

    `y_` : array-like, shape = [indeterminated]
        Labels of the selected prototypes.

    `reduction_` : float, percentual of reduction.

    Examples
    --------
    >>> from protopy.selection.ssma import SSMA
    >>> import numpy as np
    >>> X = np.array([[i] for i in range(100)])
    >>> y = np.asarray(50 * [0] + 50 * [1])
    >>> ssma = SSMA()
    >>> ssma.fit(X, y)
    SSMA(alpha=0.6, chromosomes_count=10, max_loop=1000, threshold=0)
    >>> print ssma.predict([[40],[60]])
    [0 1]
    >>> print ssma.reduction_
    0.98

    See also
    --------
    sklearn.neighbors.KNeighborsClassifier: nearest neighbors classifier

    References
    ----------
    Joaquín Derrac, Salvador García, and Francisco Herrera. Stratified prototype
    selection based on a steady-state memetic algorithm: a study of scalability.
    Memetic Computing, 2(3):183–199, 2010.

    """
    def __init__(self, n_neighbors=1, alpha=0.6, max_loop=1000, threshold=0, chromosomes_count=10):
        self.n_neighbors = n_neighbors
        self.alpha = alpha
        self.max_loop = max_loop
        self.threshold = threshold
        self.chromosomes_count = chromosomes_count

        self.evaluations = None
        self.chromosomes = None

        self.best_chromosome_ac = -1
        self.best_chromosome_rd = -1

        self.classifier = KNeighborsClassifier(n_neighbors = n_neighbors)


    def accuracy(self, chromosome, X, y):
        mask = np.asarray(chromosome, dtype=bool)
        cX, cy = X[mask], y[mask]
        #print len(cX), len(cy), sum(chromosome)

        self.classifier.fit(cX, cy)
        labels = self.classifier.predict(X)
        accuracy = (labels == y).sum()

        return float(accuracy)/len(y)


    def fitness(self, chromosome, X, y):
        #TODO add the possibility of use AUC for factor1
        ac = self.accuracy(chromosome, X, y)
        rd = 1.0 - (float(sum(chromosome))/len(chromosome))

        return self.alpha * ac + (1.0 - self.alpha) * rd


    def fitness_gain(self, gain, n):
        return self.alpha * (float(gain)/n) + (1 - self.alpha) * (1.0 / n)


    def update_threshold(self, X, y):
#.........這裏部分代碼省略.........
開發者ID:dvro,項目名稱:scikit-protopy,代碼行數:103,代碼來源:ssma.py


注:本文中的sklearn.neighbors.classification.KNeighborsClassifier.predict方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。