本文整理匯總了Python中sklearn.neighbors.classification.KNeighborsClassifier.kneighbors方法的典型用法代碼示例。如果您正苦於以下問題:Python KNeighborsClassifier.kneighbors方法的具體用法?Python KNeighborsClassifier.kneighbors怎麽用?Python KNeighborsClassifier.kneighbors使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.neighbors.classification.KNeighborsClassifier
的用法示例。
在下文中一共展示了KNeighborsClassifier.kneighbors方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: DCS
# 需要導入模塊: from sklearn.neighbors.classification import KNeighborsClassifier [as 別名]
# 或者: from sklearn.neighbors.classification.KNeighborsClassifier import kneighbors [as 別名]
class DCS(object):
@abstractmethod
def select(self, ensemble, x):
pass
def __init__(self, Xval, yval, K=5, weighted=False, knn=None):
self.Xval = Xval
self.yval = yval
self.K = K
if knn == None:
self.knn = KNeighborsClassifier(n_neighbors=K, algorithm='brute')
else:
self.knn = knn
self.knn.fit(Xval, yval)
self.weighted = weighted
def get_neighbors(self, x, return_distance=False):
# obtain the K nearest neighbors of test sample in the validation set
if not return_distance:
[idx] = self.knn.kneighbors(x,
return_distance=return_distance)
else:
[dists], [idx] = self.knn.kneighbors(x,
return_distance=return_distance)
X_nn = self.Xval[idx] # k neighbors
y_nn = self.yval[idx] # k neighbors target
if return_distance:
return X_nn, y_nn, dists
else:
return X_nn, y_nn
示例2: _main_loop
# 需要導入模塊: from sklearn.neighbors.classification import KNeighborsClassifier [as 別名]
# 或者: from sklearn.neighbors.classification.KNeighborsClassifier import kneighbors [as 別名]
def _main_loop(self):
exit_count = 0
knn = KNeighborsClassifier(n_neighbors = 1, algorithm='brute')
while exit_count < len(self.groups):
index, exit_count = 0, 0
while index < len(self.groups):
group = self.groups[index]
reps_x = np.asarray([g.rep_x for g in self.groups])
reps_y = np.asarray([g.label for g in self.groups])
knn.fit(reps_x, reps_y)
nn_idx = knn.kneighbors(group.X, n_neighbors=1, return_distance=False)
nn_idx = nn_idx.T[0]
mask = nn_idx == index
# if all are correctly classified
if not (False in mask):
exit_count = exit_count + 1
# if all are misclasified
elif not (group.label in reps_y[nn_idx]):
pca = PCA(n_components=1)
pca.fit(group.X)
# maybe use a 'for' instead of creating array
d = pca.transform(reps_x[index])
dis = [pca.transform(inst)[0] for inst in group.X]
mask_split = (dis < d).flatten()
new_X = group.X[mask_split]
self.groups.append(_Group(new_X, group.label))
group.X = group.X[~mask_split]
elif (reps_y[nn_idx] == group.label).all() and (nn_idx != index).any():
mask_mv = nn_idx != index
index_mv = np.asarray(range(len(group)))[mask_mv]
X_mv = group.remove_instances(index_mv)
G_mv = nn_idx[mask_mv]
for x, g in zip(X_mv, G_mv):
self.groups[g].add_instances([x])
elif (reps_y[nn_idx] != group.label).sum()/float(len(group)) > self.r_mis:
mask_mv = reps_y[nn_idx] != group.label
new_X = group.X[mask_mv]
self.groups.append(_Group(new_X, group.label))
group.X = group.X[~mask_mv]
else:
exit_count = exit_count + 1
if len(group) == 0:
self.groups.remove(group)
else:
index = index + 1
for g in self.groups:
g.update_all()
return self.groups
示例3: index_nearest_neighbor
# 需要導入模塊: from sklearn.neighbors.classification import KNeighborsClassifier [as 別名]
# 或者: from sklearn.neighbors.classification.KNeighborsClassifier import kneighbors [as 別名]
def index_nearest_neighbor(self, S, X, y):
classifier = KNeighborsClassifier(n_neighbors=1)
U = []
S_mask = np.array(S, dtype=bool, copy=True)
indexs = np.asarray(range(len(y)))[S_mask]
X_tra, y_tra = X[S_mask], y[S_mask]
for i in range(len(y)):
real_indexes = np.asarray(range(len(y)))[S_mask]
X_tra, y_tra = X[S_mask], y[S_mask]
#print len(X_tra), len(y_tra)
classifier.fit(X_tra, y_tra)
[[index]] = classifier.kneighbors(X[i], return_distance=False)
U = U + [real_indexes[index]]
return U
示例4: SGP2
# 需要導入模塊: from sklearn.neighbors.classification import KNeighborsClassifier [as 別名]
# 或者: from sklearn.neighbors.classification.KNeighborsClassifier import kneighbors [as 別名]
class SGP2(SGP):
"""Self-Generating Prototypes 2
The Self-Generating Prototypes 2 is the second version of the
Self-Generating Prototypes algorithm.
It has a higher generalization power, including the procedures
merge and pruning.
Parameters
----------
r_min: float, optional (default = 0.0)
Determine the minimum size of a cluster [0.00, 0.20]
r_mis: float, optional (default = 0.0)
Determine the error tolerance before split a group
Attributes
----------
`X_` : array-like, shape = [indeterminated, n_features]
Selected prototypes.
`y_` : array-like, shape = [indeterminated]
Labels of the selected prototypes.
`reduction_` : float, percentual of reduction.
Examples
--------
>>> from protopy.generation.sgp import SGP2
>>> import numpy as np
>>> X = [np.asarray(range(1,13)) + np.asarray([0.1,0,-0.1,0.1,0,-0.1,0.1,-0.1,0.1,-0.1,0.1,-0.1])]
>>> X = np.asarray(X).T
>>> y = np.array([1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 1])
>>> sgp2 = SGP2()
>>> sgp2.fit(X, y)
SGP2(r_min=0.0, r_mis=0.0)
>>> print sgp2.reduction_
0.5
See also
--------
protopy.generation.SGP: self-generating prototypes
protopy.generation.sgp.ASGP: adaptive self-generating prototypes
References
----------
Hatem A. Fayed, Sherif R Hashem, and Amir F Atiya. Self-generating prototypes
for pattern classification. Pattern Recognition, 40(5):1498–1509, 2007.
"""
def __init__(self, r_min=0.0, r_mis=0.0):
self.groups = None
self.r_min = r_min
self.r_mis = r_mis
self.n_neighbors = 1
self.classifier = None
self.groups = None
def reduce_data(self, X, y):
X, y = check_X_y(X, y, accept_sparse="csr")
if self.classifier == None:
self.classifier = KNeighborsClassifier(n_neighbors=self.n_neighbors)
if self.classifier.n_neighbors != self.n_neighbors:
self.classifier.n_neighbors = self.n_neighbors
classes = np.unique(y)
self.classes_ = classes
# loading inicial groups
self.groups = []
for label in classes:
mask = y == label
self.groups = self.groups + [_Group(X[mask], label)]
self._main_loop()
self._generalization_step()
self._merge()
self._pruning()
self.X_ = np.asarray([g.rep_x for g in self.groups])
self.y_ = np.asarray([g.label for g in self.groups])
self.reduction_ = 1.0 - float(len(self.y_))/len(y)
return self.X_, self.y_
def _merge(self):
if len(self.groups) < 2:
return self.groups
merged = False
for group in self.groups:
reps_x = np.asarray([g.rep_x for g in self.groups])
reps_y = np.asarray([g.label for g in self.groups])
self.classifier.fit(reps_x, reps_y)
nn2_idx = self.classifier.kneighbors(group.X, n_neighbors=2, return_distance=False)
nn2_idx = nn2_idx.T[1]
# could use a threshold
#.........這裏部分代碼省略.........
示例5: TomekLinks
# 需要導入模塊: from sklearn.neighbors.classification import KNeighborsClassifier [as 別名]
# 或者: from sklearn.neighbors.classification.KNeighborsClassifier import kneighbors [as 別名]
class TomekLinks(InstanceReductionMixin):
"""Tomek Links.
The Tomek Links algorithm removes a pair instances that
forms a Tomek Link. This techniques removes instances in
the decision region.
Parameters
----------
n_neighbors : int, optional (default = 3)
Number of neighbors to use by default in the classification (only).
The Tomek Links uses only n_neighbors=1 in the reduction.
keep_class : int, optional (default = None)
Label of the class to not be removed in the tomek links. If None,
it removes all nodes of the links.
Attributes
----------
`X_` : array-like, shape = [indeterminated, n_features]
Selected prototypes.
`y_` : array-like, shape = [indeterminated]
Labels of the selected prototypes.
`reduction_` : float, percentual of reduction.
Examples
--------
>>> from protopy.selection.tomek_links import TomekLinks
>>> import numpy as np
>>> X = np.array([[0],[1],[2.1],[2.9],[4],[5],[6],[7.1],[7.9],[9]])
>>> y = np.array([1,1,2,1,2,2,2,1,2,2])
>>> tl = TomekLinks()
>>> tl.fit(X, y)
TomekLinks(keep_class=None)
>>> print tl.predict([[2.5],[7.5]])
[1, 2]
>>> print tl.reduction_
0.4
See also
--------
protopy.selection.enn.ENN: edited nearest neighbor
References
----------
I. Tomek, “Two modifications of cnn,” IEEE Transactions on Systems,
Man and Cybernetics, vol. SMC-6, pp. 769–772, 1976.
"""
def __init__(self, n_neighbors=3, keep_class=None):
self.n_neighbors = n_neighbors
self.classifier = None
self.keep_class = keep_class
def reduce_data(self, X, y):
if self.classifier == None:
self.classifier = KNeighborsClassifier(n_neighbors=self.n_neighbors, algorithm='brute')
if self.classifier.n_neighbors != self.n_neighbors:
self.classifier.n_neighbors = self.n_neighbors
X, y = check_arrays(X, y, sparse_format="csr")
classes = np.unique(y)
self.classes_ = classes
self.classifier.fit(X, y)
nn_idx = self.classifier.kneighbors(X, n_neighbors=2, return_distance=False)
nn_idx = nn_idx.T[1]
mask = [nn_idx[nn_idx[index]] == index and y[index] != y[nn_idx[index]] for index in xrange(nn_idx.shape[0])]
mask = ~np.asarray(mask)
if self.keep_class != None and self.keep_class in self.classes_:
mask[y==self.keep_class] = True
self.X_ = np.asarray(X[mask])
self.y_ = np.asarray(y[mask])
self.reduction_ = 1.0 - float(len(self.y_)) / len(y)
return self.X_, self.y_
示例6: SSMA
# 需要導入模塊: from sklearn.neighbors.classification import KNeighborsClassifier [as 別名]
# 或者: from sklearn.neighbors.classification.KNeighborsClassifier import kneighbors [as 別名]
#.........這裏部分代碼省略.........
def fitness_gain(self, gain, n):
return self.alpha * (float(gain)/n) + (1 - self.alpha) * (1.0 / n)
def update_threshold(self, X, y):
best_index = np.argmax(self.evaluations)
chromosome = self.chromosomes[best_index]
best_ac = self.accuracy(chromosome, X, y)
best_rd = 1.0 - float(sum(chromosome))/len(y)
if best_ac <= self.best_chromosome_ac:
self.threshold = self.threshold + 1
if best_rd <= self.best_chromosome_rd:
self.threshold = self.threshold - 1
self.best_chromosome_ac = best_ac
self.best_chromosome_rd = best_rd
def index_nearest_neighbor(self, S, X, y):
classifier = KNeighborsClassifier(n_neighbors=1)
U = []
S_mask = np.array(S, dtype=bool, copy=True)
indexs = np.asarray(range(len(y)))[S_mask]
X_tra, y_tra = X[S_mask], y[S_mask]
for i in range(len(y)):
real_indexes = np.asarray(range(len(y)))[S_mask]
X_tra, y_tra = X[S_mask], y[S_mask]
#print len(X_tra), len(y_tra)
classifier.fit(X_tra, y_tra)
[[index]] = classifier.kneighbors(X[i], return_distance=False)
U = U + [real_indexes[index]]
return U
def memetic_looper(self, S, R):
c = 0
for i in range(len(S)):
if S[i] == 1 and i not in R:
c = c + 1
if c == 2:
return True
return False
def memetic_select_j(self, S, R):
indexs = []
for i in range(len(S)):
if i not in R and S[i] == 1:
indexs.append(i)
# if list is empty wlil return error
return np.random.choice(indexs)
def generate_population(self, X, y):
self.chromosomes = [[np.random.choice([0,1]) for i in range(len(y))]
for c in range(self.chromosomes_count)]
self.evaluations = [self.fitness(c, X, y) for c in self.chromosomes]
self.update_threshold(X, y)