當前位置: 首頁>>代碼示例>>Python>>正文


Python classification.KNeighborsClassifier類代碼示例

本文整理匯總了Python中sklearn.neighbors.classification.KNeighborsClassifier的典型用法代碼示例。如果您正苦於以下問題:Python KNeighborsClassifier類的具體用法?Python KNeighborsClassifier怎麽用?Python KNeighborsClassifier使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了KNeighborsClassifier類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: DCS

class DCS(object):

    @abstractmethod
    def select(self, ensemble, x):
        pass

    def __init__(self, Xval, yval, K=5, weighted=False, knn=None):
        self.Xval = Xval
        self.yval = yval
        self.K = K

        if knn == None:
            self.knn = KNeighborsClassifier(n_neighbors=K, algorithm='brute')
        else:
            self.knn = knn

        self.knn.fit(Xval, yval)
        self.weighted = weighted


    def get_neighbors(self, x, return_distance=False):
        # obtain the K nearest neighbors of test sample in the validation set
        if not return_distance:
            [idx] = self.knn.kneighbors(x, 
                    return_distance=return_distance)
        else:
            [dists], [idx] = self.knn.kneighbors(x, 
                    return_distance=return_distance)
        X_nn = self.Xval[idx] # k neighbors
        y_nn = self.yval[idx] # k neighbors target

        if return_distance:
            return X_nn, y_nn, dists
        else:
            return X_nn, y_nn
開發者ID:guilhermepaiva,項目名稱:brew,代碼行數:35,代碼來源:base.py

示例2: _pruning

    def _pruning(self):

        if len(self.groups) < 2:
            return self.groups

        pruned, fst = False, True
        knn = KNeighborsClassifier(n_neighbors = 1, algorithm='brute')
        
        while pruned or fst:
            index = 0
            pruned, fst = False, False

            while index < len(self.groups):
                group = self.groups[index]

                mask = np.ones(len(self.groups), dtype=bool)
                mask[index] = False
                reps_x = np.asarray([g.rep_x for g in self.groups])[mask]
                reps_y = np.asarray([g.label for g in self.groups])[mask]
                labels = knn.fit(reps_x, reps_y).predict(group.X)

                if (labels == group.label).all():
                    self.groups.remove(group)
                    pruned = True
                else:
                    index = index + 1

                if len(self.groups) == 1:
                    index = len(self.groups)
                    pruned = False

        return self.groups
開發者ID:antonlarin,項目名稱:scikit-protopy,代碼行數:32,代碼來源:sgp.py

示例3: __init__

class RawModel:
    def __init__(self):
        # 2015-05-15 GEL Found that n_components=20 gives a nice balance of 
        # speed (substantial improvement), accuracy, and reduced memory usage 
        # (25% decrease).
        self.decomposer = TruncatedSVD(n_components=20)

        # 2015-05-15 GEL algorithm='ball_tree' uses less memory on average than 
        # algorithm='kd_tree'
        
        # 2015-05-15 GEL Evaluation of metrics by accuracy (based on 8000 training examples)
        # euclidean        0.950025
        # manhattan        0.933533
        # chebyshev        0.675662
        # hamming          0.708646
        # canberra         0.934033
        # braycurtis       0.940530
        self.model = KNeighborsClassifier(n_neighbors=5, algorithm='ball_tree', metric='euclidean')

    def fit(self, trainExamples):       
        X = self.decomposer.fit_transform( vstack( [reshape(x.X, (1, x.WIDTH * x.HEIGHT)) for x in trainExamples] ) )
        Y = [x.Y for x in trainExamples]

        self.model.fit(X, Y)
        return self

    def predict(self, examples):
        X = self.decomposer.transform( vstack( [reshape(x.X, (1, x.WIDTH * x.HEIGHT)) for x in examples] ) )
        return self.model.predict( X )
開發者ID:lewellen,項目名稱:digit-recognizer,代碼行數:29,代碼來源:rawModel.py

示例4: _main_loop

    def _main_loop(self):
        exit_count = 0
        knn = KNeighborsClassifier(n_neighbors = 1, algorithm='brute')
        while exit_count < len(self.groups):
            index, exit_count = 0, 0
            while index < len(self.groups):

                group = self.groups[index]
                reps_x = np.asarray([g.rep_x for g in self.groups])
                reps_y = np.asarray([g.label for g in self.groups])
                knn.fit(reps_x, reps_y)
                
                nn_idx = knn.kneighbors(group.X, n_neighbors=1, return_distance=False)
                nn_idx = nn_idx.T[0]
                mask = nn_idx == index
                
                # if all are correctly classified
                if not (False in mask):
                    exit_count = exit_count + 1
                
                # if all are misclasified
                elif not (group.label in reps_y[nn_idx]):
                    pca = PCA(n_components=1)
                    pca.fit(group.X)
                    # maybe use a 'for' instead of creating array
                    d = pca.transform(reps_x[index])
                    dis = [pca.transform(inst)[0] for inst in group.X]
                    mask_split = (dis < d).flatten()
                    
                    new_X = group.X[mask_split]
                    self.groups.append(_Group(new_X, group.label))
                    group.X = group.X[~mask_split]
                
                elif (reps_y[nn_idx] == group.label).all() and (nn_idx != index).any():
                    mask_mv = nn_idx != index
                    index_mv = np.asarray(range(len(group)))[mask_mv]
                    X_mv = group.remove_instances(index_mv)
                    G_mv = nn_idx[mask_mv]                        

                    for x, g in zip(X_mv, G_mv):
                        self.groups[g].add_instances([x])

                elif (reps_y[nn_idx] != group.label).sum()/float(len(group)) > self.r_mis:
                    mask_mv = reps_y[nn_idx] != group.label
                    new_X = group.X[mask_mv]
                    self.groups.append(_Group(new_X, group.label))
                    group.X = group.X[~mask_mv]
                else:
                   exit_count = exit_count + 1

                if len(group) == 0:
                    self.groups.remove(group)
                else:
                    index = index + 1

                for g in self.groups:
                    g.update_all()

        return self.groups                     
開發者ID:antonlarin,項目名稱:scikit-protopy,代碼行數:59,代碼來源:sgp.py

示例5: evaluate

def evaluate(Xtra, ytra, Xtst, ytst, k=1, positive_label=1):
    knn = KNeighborsClassifier(n_neighbors=k, algorithm='brute')
    knn.fit(Xtra, ytra)

    y_true = ytst
    y_pred = knn.predict(Xtst)

    return evaluate_results(y_true, y_pred, positive_label=positive_label)
開發者ID:dvro,項目名稱:ml,代碼行數:8,代碼來源:metrics.py

示例6: predict

    def predict(self, X, n_neighbors=1):
        """Perform classification on an array of test vectors X.

        The predicted class C for each sample in X is returned.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]

        Returns
        -------
        C : array, shape = [n_samples]

        Notes
        -----
        The default prediction is using KNeighborsClassifier, if the
        instance reducition algorithm is to be performed with another
        classifier, it should be explicited overwritten and explained
        in the documentation.
        """
        X = atleast2d_or_csr(X)
        if not hasattr(self, "X_") or self.X_ is None:
            raise AttributeError("Model has not been trained yet.")

        if not hasattr(self, "y_") or self.y_ is None:
            raise AttributeError("Model has not been trained yet.")

        if self.classifier == None:
            self.classifier = KNeighborsClassifier(n_neighbors=n_neighbors)

        self.classifier.fit(self.X_, self.y_)
        return self.classifier.predict(X)
開發者ID:dvro,項目名稱:ml,代碼行數:32,代碼來源:baseNew.py

示例7: reduce_data

    def reduce_data(self, X, y):
        
        X, y = check_X_y(X, y, accept_sparse="csr")

        if self.classifier == None:
            self.classifier = KNeighborsClassifier(n_neighbors=self.n_neighbors)

        prots_s = []
        labels_s = []

        classes = np.unique(y)
        self.classes_ = classes

        for cur_class in classes:
            mask = y == cur_class
            insts = X[mask]
            prots_s = prots_s + [insts[np.random.randint(0, insts.shape[0])]]
            labels_s = labels_s + [cur_class]


        self.classifier.fit(prots_s, labels_s)
        for sample, label in zip(X, y):
            if self.classifier.predict(sample) != [label]:
                prots_s = prots_s + [sample]
                labels_s = labels_s + [label]
                self.classifier.fit(prots_s, labels_s)
       
        self.X_ = np.asarray(prots_s)
        self.y_ = np.asarray(labels_s)
        self.reduction_ = 1.0 - float(len(self.y_))/len(y)
        return self.X_, self.y_
開發者ID:antonlarin,項目名稱:scikit-protopy,代碼行數:31,代碼來源:cnn.py

示例8: reduce_data

    def reduce_data(self, X, y):
        X, y = check_X_y(X, y, accept_sparse="csr")

        if self.classifier == None:
            self.classifier = KNeighborsClassifier(n_neighbors=self.n_neighbors)
        if self.classifier.n_neighbors != self.n_neighbors:
            self.classifier.n_neighbors = self.n_neighbors

        classes = np.unique(y)
        self.classes_ = classes

        # loading inicial groups
        self.groups = []
        for label in classes:
            mask = y == label
            self.groups = self.groups + [_Group(X[mask], label)]

        self._main_loop()
        self._generalization_step()
        self._merge()
        self._pruning()
        self.X_ = np.asarray([g.rep_x for g in self.groups])
        self.y_ = np.asarray([g.label for g in self.groups])
        self.reduction_ = 1.0 - float(len(self.y_))/len(y)
        return self.X_, self.y_
開發者ID:antonlarin,項目名稱:scikit-protopy,代碼行數:25,代碼來源:sgp.py

示例9: reduce_data

    def reduce_data(self, X, y):
        if self.classifier == None:
            self.classifier = KNeighborsClassifier(n_neighbors=self.n_neighbors)
        if self.classifier.n_neighbors != self.n_neighbors:
            self.classifier.n_neighbors = self.n_neighbors

        X, y = check_arrays(X, y, sparse_format="csr")

        classes = np.unique(y)
        self.classes_ = classes

        if self.n_neighbors >= len(X):
            self.X_ = np.array(X)
            self.y_ = np.array(y)
            self.reduction_ = 0.0

        mask = np.zeros(y.size, dtype=bool)

        tmp_m = np.ones(y.size, dtype=bool)
        for i in xrange(y.size):
            tmp_m[i] = not tmp_m[i]
            self.classifier.fit(X[tmp_m], y[tmp_m])
            sample, label = X[i], y[i]

            if self.classifier.predict(sample) == [label]:
                mask[i] = not mask[i]

            tmp_m[i] = not tmp_m[i]

        self.X_ = np.asarray(X[mask])
        self.y_ = np.asarray(y[mask])
        self.reduction_ = 1.0 - float(len(self.y_)) / len(y)
        return self.X_, self.y_
開發者ID:viisar,項目名稱:scikit-protopy,代碼行數:33,代碼來源:enn.py

示例10: index_nearest_neighbor

    def index_nearest_neighbor(self, S, X, y):
        classifier = KNeighborsClassifier(n_neighbors=1)

        U = []
        S_mask = np.array(S, dtype=bool, copy=True)
        indexs = np.asarray(range(len(y)))[S_mask]
        X_tra, y_tra = X[S_mask], y[S_mask]

        for i in range(len(y)):
            real_indexes = np.asarray(range(len(y)))[S_mask]
            X_tra, y_tra = X[S_mask], y[S_mask]
            #print len(X_tra), len(y_tra)
            classifier.fit(X_tra, y_tra)
            [[index]] = classifier.kneighbors(X[i], return_distance=False)
            U = U + [real_indexes[index]]

        return U
開發者ID:dvro,項目名稱:scikit-protopy,代碼行數:17,代碼來源:ssma.py

示例11: __init__

    def __init__(self, Xval, yval, K=5, weighted=False, knn=None):
        self.Xval = Xval
        self.yval = yval
        self.K = K

        if knn == None:
            self.knn = KNeighborsClassifier(n_neighbors=K, algorithm='brute')
        else:
            self.knn = knn

        self.knn.fit(Xval, yval)
        self.weighted = weighted
開發者ID:guilhermepaiva,項目名稱:brew,代碼行數:12,代碼來源:base.py

示例12: compute_cnn

def compute_cnn(X, y):

  "condenced nearest neighbor. the cnn removes reduntant instances, maintaining the samples in the decision boundaries."

  classifier = KNeighborsClassifier(n_neighbors=3)

  prots_s = []
  labels_s = []

  classes = np.unique(y)
  classes_ = classes

  for cur_class in classes:
    mask = y == cur_class
    insts = X[mask]
    prots_s = prots_s + [insts[np.random.randint(0, insts.shape[0])]]
    labels_s = labels_s + [cur_class]
    
  classifier.fit(prots_s, labels_s)
  for sample, label in zip(X, y):
    if classifier.predict(sample) != [label]:
      prots_s = prots_s + [sample]
      labels_s = labels_s + [label]
      classifier.fit(prots_s, labels_s)

  X_ = np.asarray(prots_s)
  y_ = np.asarray(labels_s)
  reduction_ = 1.0 - float(len(y_)/len(y))
  print reduction_
開發者ID:guilhermepaiva,項目名稱:mlstuffs,代碼行數:29,代碼來源:cnn.py

示例13: compute_enn

def compute_enn(X, y):
  """
  the edited nearest neighbors removes the instances in the boundaries, maintaining reduntant samples
  """

  classifier = KNeighborsClassifier(n_neighbors=3)

  classes = np.unique(y)
  classes_ = classes

  mask = np.zeros(y.size, dtype=bool)
  classifier.fit(X, y)

  for i in xrange(y.size):
    sample, label = X[i], y[i]
    if classifier.predict(sample) == [label]:
      mask[i] = not mask[i]

  X_ = np.asarray(X[mask])
  y_ = np.asarray(y[mask])
  reduction_ = 1.0 - float(len(y_)) / len(y)
  print reduction_
開發者ID:guilhermepaiva,項目名稱:mlstuffs,代碼行數:22,代碼來源:enn.py

示例14: __init__

    def __init__(self, n_neighbors=1, alpha=0.6, max_loop=1000, threshold=0, chromosomes_count=10):
        self.n_neighbors = n_neighbors
        self.alpha = alpha
        self.max_loop = max_loop
        self.threshold = threshold
        self.chromosomes_count = chromosomes_count

        self.evaluations = None
        self.chromosomes = None

        self.best_chromosome_ac = -1
        self.best_chromosome_rd = -1

        self.classifier = KNeighborsClassifier(n_neighbors = n_neighbors)
開發者ID:dvro,項目名稱:scikit-protopy,代碼行數:14,代碼來源:ssma.py

示例15: reduce_data

    def reduce_data(self, X, y):
        if self.classifier == None:
            self.classifier = KNeighborsClassifier(n_neighbors=self.n_neighbors, algorithm='brute')
        if self.classifier.n_neighbors != self.n_neighbors:
            self.classifier.n_neighbors = self.n_neighbors

        X, y = check_arrays(X, y, sparse_format="csr")

        classes = np.unique(y)
        self.classes_ = classes
        self.classifier.fit(X, y)
        nn_idx = self.classifier.kneighbors(X, n_neighbors=2, return_distance=False)
        nn_idx = nn_idx.T[1]

        mask = [nn_idx[nn_idx[index]] == index and y[index] != y[nn_idx[index]] for index in xrange(nn_idx.shape[0])]
        mask = ~np.asarray(mask) 
        if self.keep_class != None and self.keep_class in self.classes_:
            mask[y==self.keep_class] = True

        self.X_ = np.asarray(X[mask])
        self.y_ = np.asarray(y[mask])
        self.reduction_ = 1.0 - float(len(self.y_)) / len(y)

        return self.X_, self.y_
開發者ID:guilhermepaiva,項目名稱:scikit-protopy,代碼行數:24,代碼來源:tomek_links.py


注:本文中的sklearn.neighbors.classification.KNeighborsClassifier類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。