本文整理匯總了Python中sklearn.feature_selection.SelectFdr.transfrom方法的典型用法代碼示例。如果您正苦於以下問題:Python SelectFdr.transfrom方法的具體用法?Python SelectFdr.transfrom怎麽用?Python SelectFdr.transfrom使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.feature_selection.SelectFdr
的用法示例。
在下文中一共展示了SelectFdr.transfrom方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: svm_cv
# 需要導入模塊: from sklearn.feature_selection import SelectFdr [as 別名]
# 或者: from sklearn.feature_selection.SelectFdr import transfrom [as 別名]
def svm_cv(data, data_target):
X_train, X_test, y_train, y_test = cross_validation.train_test_split(data, data_target)
print "*" * 79
print "Training..."
# selector = SelectFdr(chi2)
selector = SelectFdr(f_classif)
selector.fit(X_train, y_train)
clf = svm.SVC(kernel='linear', probability=True)
clf.fit(selector.transform(X_train), y_train)
print "Testing..."
pred = clf.predict(selector.transform(X_test))
probs = pred.predict_proba(selector.transfrom(X_test))
accuracy_score = metrics.accuracy_score(y_test, pred)
classification_report = metrics.classification_report(y_test, pred)
support = selector.get_support()
print support
print accuracy_score
print classification_report
precision, recall, thresholds = precision_recall_curve(y_test, probs[:, 1])