當前位置: 首頁>>代碼示例>>Python>>正文


Python SelectFdr.get_support方法代碼示例

本文整理匯總了Python中sklearn.feature_selection.SelectFdr.get_support方法的典型用法代碼示例。如果您正苦於以下問題:Python SelectFdr.get_support方法的具體用法?Python SelectFdr.get_support怎麽用?Python SelectFdr.get_support使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.feature_selection.SelectFdr的用法示例。


在下文中一共展示了SelectFdr.get_support方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: single_fdr

# 需要導入模塊: from sklearn.feature_selection import SelectFdr [as 別名]
# 或者: from sklearn.feature_selection.SelectFdr import get_support [as 別名]
    def single_fdr(alpha, n_informative, random_state):
        X, y = make_regression(
            n_samples=150,
            n_features=20,
            n_informative=n_informative,
            shuffle=False,
            random_state=random_state,
            noise=10,
        )

        with warnings.catch_warnings(record=True):
            # Warnings can be raised when no features are selected
            # (low alpha or very noisy data)
            univariate_filter = SelectFdr(f_regression, alpha=alpha)
            X_r = univariate_filter.fit(X, y).transform(X)
            X_r2 = GenericUnivariateSelect(f_regression, mode="fdr", param=alpha).fit(X, y).transform(X)

        assert_array_equal(X_r, X_r2)
        support = univariate_filter.get_support()
        num_false_positives = np.sum(support[n_informative:] == 1)
        num_true_positives = np.sum(support[:n_informative] == 1)

        if num_false_positives == 0:
            return 0.0
        false_discovery_rate = num_false_positives / (num_true_positives + num_false_positives)
        return false_discovery_rate
開發者ID:nelson-liu,項目名稱:scikit-learn,代碼行數:28,代碼來源:test_feature_select.py

示例2: test_boundary_case_ch2

# 需要導入模塊: from sklearn.feature_selection import SelectFdr [as 別名]
# 或者: from sklearn.feature_selection.SelectFdr import get_support [as 別名]
def test_boundary_case_ch2():
    # Test boundary case, and always aim to select 1 feature.
    X = np.array([[10, 20], [20, 20], [20, 30]])
    y = np.array([[1], [0], [0]])
    scores, pvalues = chi2(X, y)
    assert_array_almost_equal(scores, np.array([4.0, 0.71428571]))
    assert_array_almost_equal(pvalues, np.array([0.04550026, 0.39802472]))

    filter_fdr = SelectFdr(chi2, alpha=0.1)
    filter_fdr.fit(X, y)
    support_fdr = filter_fdr.get_support()
    assert_array_equal(support_fdr, np.array([True, False]))

    filter_kbest = SelectKBest(chi2, k=1)
    filter_kbest.fit(X, y)
    support_kbest = filter_kbest.get_support()
    assert_array_equal(support_kbest, np.array([True, False]))

    filter_percentile = SelectPercentile(chi2, percentile=50)
    filter_percentile.fit(X, y)
    support_percentile = filter_percentile.get_support()
    assert_array_equal(support_percentile, np.array([True, False]))

    filter_fpr = SelectFpr(chi2, alpha=0.1)
    filter_fpr.fit(X, y)
    support_fpr = filter_fpr.get_support()
    assert_array_equal(support_fpr, np.array([True, False]))

    filter_fwe = SelectFwe(chi2, alpha=0.1)
    filter_fwe.fit(X, y)
    support_fwe = filter_fwe.get_support()
    assert_array_equal(support_fwe, np.array([True, False]))
開發者ID:nelson-liu,項目名稱:scikit-learn,代碼行數:34,代碼來源:test_feature_select.py

示例3: test_select_fdr_classif

# 需要導入模塊: from sklearn.feature_selection import SelectFdr [as 別名]
# 或者: from sklearn.feature_selection.SelectFdr import get_support [as 別名]
def test_select_fdr_classif():
    """
    Test whether the relative univariate feature selection
    gets the correct items in a simple classification problem
    with the fpr heuristic
    """
    X, Y = make_classification(
        n_samples=200,
        n_features=20,
        n_informative=3,
        n_redundant=2,
        n_repeated=0,
        n_classes=8,
        n_clusters_per_class=1,
        flip_y=0.0,
        class_sep=10,
        shuffle=False,
        random_state=0,
    )

    univariate_filter = SelectFdr(f_classif, alpha=0.0001)
    X_r = univariate_filter.fit(X, Y).transform(X)
    X_r2 = GenericUnivariateSelect(f_classif, mode="fdr", param=0.0001).fit(X, Y).transform(X)
    assert_array_equal(X_r, X_r2)
    support = univariate_filter.get_support()
    gtruth = np.zeros(20)
    gtruth[:5] = 1
    assert_array_equal(support, gtruth)
開發者ID:nellaivijay,項目名稱:scikit-learn,代碼行數:30,代碼來源:test_feature_select.py

示例4: test_select_fdr_regression

# 需要導入模塊: from sklearn.feature_selection import SelectFdr [as 別名]
# 或者: from sklearn.feature_selection.SelectFdr import get_support [as 別名]
def test_select_fdr_regression():
    """
    Test whether the relative univariate feature selection
    gets the correct items in a simple regression problem
    with the fdr heuristic
    """
    X, Y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0)

    univariate_filter = SelectFdr(f_regression, alpha=0.01)
    X_r = univariate_filter.fit(X, Y).transform(X)
    X_r2 = GenericUnivariateSelect(f_regression, mode="fdr", param=0.01).fit(X, Y).transform(X)
    assert_array_equal(X_r, X_r2)
    support = univariate_filter.get_support()
    gtruth = np.zeros(20)
    gtruth[:5] = 1
    assert_array_equal(support, gtruth)
開發者ID:nellaivijay,項目名稱:scikit-learn,代碼行數:18,代碼來源:test_feature_select.py

示例5: svm_cv

# 需要導入模塊: from sklearn.feature_selection import SelectFdr [as 別名]
# 或者: from sklearn.feature_selection.SelectFdr import get_support [as 別名]
def svm_cv(data, data_target):
    X_train, X_test, y_train, y_test = cross_validation.train_test_split(data, data_target)
    print "*" * 79
    print "Training..."
    # selector = SelectFdr(chi2)
    selector = SelectFdr(f_classif)
    selector.fit(X_train, y_train)
    clf = svm.SVC(kernel='linear', probability=True)
    clf.fit(selector.transform(X_train), y_train)
    print "Testing..."
    pred = clf.predict(selector.transform(X_test))
    probs = pred.predict_proba(selector.transfrom(X_test))
    accuracy_score = metrics.accuracy_score(y_test, pred)
    classification_report = metrics.classification_report(y_test, pred)
    support = selector.get_support()
    print support
    print accuracy_score
    print classification_report
    precision, recall, thresholds = precision_recall_curve(y_test, probs[:, 1])
開發者ID:jfortuna,項目名稱:cs224u-project,代碼行數:21,代碼來源:househearing.py


注:本文中的sklearn.feature_selection.SelectFdr.get_support方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。