本文整理匯總了Python中sklearn.feature_selection.SelectFdr類的典型用法代碼示例。如果您正苦於以下問題:Python SelectFdr類的具體用法?Python SelectFdr怎麽用?Python SelectFdr使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了SelectFdr類的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_boundary_case_ch2
def test_boundary_case_ch2():
# Test boundary case, and always aim to select 1 feature.
X = np.array([[10, 20], [20, 20], [20, 30]])
y = np.array([[1], [0], [0]])
scores, pvalues = chi2(X, y)
assert_array_almost_equal(scores, np.array([4.0, 0.71428571]))
assert_array_almost_equal(pvalues, np.array([0.04550026, 0.39802472]))
filter_fdr = SelectFdr(chi2, alpha=0.1)
filter_fdr.fit(X, y)
support_fdr = filter_fdr.get_support()
assert_array_equal(support_fdr, np.array([True, False]))
filter_kbest = SelectKBest(chi2, k=1)
filter_kbest.fit(X, y)
support_kbest = filter_kbest.get_support()
assert_array_equal(support_kbest, np.array([True, False]))
filter_percentile = SelectPercentile(chi2, percentile=50)
filter_percentile.fit(X, y)
support_percentile = filter_percentile.get_support()
assert_array_equal(support_percentile, np.array([True, False]))
filter_fpr = SelectFpr(chi2, alpha=0.1)
filter_fpr.fit(X, y)
support_fpr = filter_fpr.get_support()
assert_array_equal(support_fpr, np.array([True, False]))
filter_fwe = SelectFwe(chi2, alpha=0.1)
filter_fwe.fit(X, y)
support_fwe = filter_fwe.get_support()
assert_array_equal(support_fwe, np.array([True, False]))
示例2: single_fdr
def single_fdr(alpha, n_informative, random_state):
X, y = make_regression(
n_samples=150,
n_features=20,
n_informative=n_informative,
shuffle=False,
random_state=random_state,
noise=10,
)
with warnings.catch_warnings(record=True):
# Warnings can be raised when no features are selected
# (low alpha or very noisy data)
univariate_filter = SelectFdr(f_regression, alpha=alpha)
X_r = univariate_filter.fit(X, y).transform(X)
X_r2 = GenericUnivariateSelect(f_regression, mode="fdr", param=alpha).fit(X, y).transform(X)
assert_array_equal(X_r, X_r2)
support = univariate_filter.get_support()
num_false_positives = np.sum(support[n_informative:] == 1)
num_true_positives = np.sum(support[:n_informative] == 1)
if num_false_positives == 0:
return 0.0
false_discovery_rate = num_false_positives / (num_true_positives + num_false_positives)
return false_discovery_rate
示例3: test_select_fdr_classif
def test_select_fdr_classif():
"""
Test whether the relative univariate feature selection
gets the correct items in a simple classification problem
with the fpr heuristic
"""
X, Y = make_classification(
n_samples=200,
n_features=20,
n_informative=3,
n_redundant=2,
n_repeated=0,
n_classes=8,
n_clusters_per_class=1,
flip_y=0.0,
class_sep=10,
shuffle=False,
random_state=0,
)
univariate_filter = SelectFdr(f_classif, alpha=0.0001)
X_r = univariate_filter.fit(X, Y).transform(X)
X_r2 = GenericUnivariateSelect(f_classif, mode="fdr", param=0.0001).fit(X, Y).transform(X)
assert_array_equal(X_r, X_r2)
support = univariate_filter.get_support()
gtruth = np.zeros(20)
gtruth[:5] = 1
assert_array_equal(support, gtruth)
示例4: test_select_fdr_regression
def test_select_fdr_regression():
"""
Test whether the relative univariate feature selection
gets the correct items in a simple regression problem
with the fdr heuristic
"""
X, Y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0)
univariate_filter = SelectFdr(f_regression, alpha=0.01)
X_r = univariate_filter.fit(X, Y).transform(X)
X_r2 = GenericUnivariateSelect(f_regression, mode="fdr", param=0.01).fit(X, Y).transform(X)
assert_array_equal(X_r, X_r2)
support = univariate_filter.get_support()
gtruth = np.zeros(20)
gtruth[:5] = 1
assert_array_equal(support, gtruth)
示例5: featureFitting
def featureFitting( filename, X, y, featureNames,optimalFlag, kbest=20, alpha=0.05,model=None):
'''
Gets the K-best features (filtered by FDR, then select best ranked by t-test , more advanced options can be implemented).
Save the data/matrix with the resulting/kept features to a new output file, "REDUCED_Feat.csv"
'''
a=alpha
FD = SelectFdr(alpha=a)
X = FD.fit_transform(X,y)
selectK = SelectKBest(k=kbest)
selectK.fit(X,y)
selectK_mask=selectK.get_support()
K_featnames = featureNames[selectK_mask]
print("K_featnames: %s" %(K_featnames))
Reduced_df = pd.read_csv(filename, index_col=0)
Reduced_df = Reduced_df[Reduced_df.columns[selectK_mask]]
Reduced_df.to_csv('REDUCED_Feat.csv')
return Reduced_df
示例6: svm_cv
def svm_cv(data, data_target):
X_train, X_test, y_train, y_test = cross_validation.train_test_split(data, data_target)
print "*" * 79
print "Training..."
# selector = SelectFdr(chi2)
selector = SelectFdr(f_classif)
selector.fit(X_train, y_train)
clf = svm.SVC(kernel='linear', probability=True)
clf.fit(selector.transform(X_train), y_train)
print "Testing..."
pred = clf.predict(selector.transform(X_test))
probs = pred.predict_proba(selector.transfrom(X_test))
accuracy_score = metrics.accuracy_score(y_test, pred)
classification_report = metrics.classification_report(y_test, pred)
support = selector.get_support()
print support
print accuracy_score
print classification_report
precision, recall, thresholds = precision_recall_curve(y_test, probs[:, 1])
示例7: str
Kcv=4 #Number of stratified folds for cross validation. More = slower, more accurate.
fileName = r'\trainingSetFeatures.csv'
# filePath = r'E:\Dropbox\Dropbox\BioInformatics Lab\AA_Information\CODE\Feature_Extract\test_seq\Chap'
filePath = str(input('Input DIRRectory containing TrainingData csv '))
## features, labels, lb_encoder,featureNames = load_data(filename, 'file')
features, labels, lb_encoder,featureNames = load_data(filePath+fileName, 'file')
X, y = features, labels
print('len(set(y)',len(set(y)))
print(X.shape,"X = samples, features")
scale = StandardScaler(copy=False)
X = scale.fit_transform(X)
FD = SelectFdr(alpha=0.0005)
FD_K = SelectPercentile(percentile=70)
X = FD.fit_transform(X,y)
print(X.shape,"X post FDR alpha filter")
X_FD = FD_K.fit_transform(X,y)
print(X_FD.shape,"X post FDR+K-best alpha filter")
print("\n BASE X models: \n")
ModelParam_GridSearch(X,y,cv=Kcv)
'''
pca = PCA(n_components='mle')
X_PCA = pca.fit_transform(X)
print(X_PCA.shape,"X - PCA,mle")
ModelParam_GridSearch(X_PCA,y,cv=Kcv)
'''