當前位置: 首頁>>代碼示例>>Python>>正文


Python SymmetricGroup.matrix方法代碼示例

本文整理匯總了Python中sage.groups.perm_gps.permgroup_named.SymmetricGroup.matrix方法的典型用法代碼示例。如果您正苦於以下問題:Python SymmetricGroup.matrix方法的具體用法?Python SymmetricGroup.matrix怎麽用?Python SymmetricGroup.matrix使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sage.groups.perm_gps.permgroup_named.SymmetricGroup的用法示例。


在下文中一共展示了SymmetricGroup.matrix方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: reorder

# 需要導入模塊: from sage.groups.perm_gps.permgroup_named import SymmetricGroup [as 別名]
# 或者: from sage.groups.perm_gps.permgroup_named.SymmetricGroup import matrix [as 別名]
    def reorder(self, order):
        """
        Return a new isogeny class with the curves reordered.

        INPUT:

        - ``order`` -- None, a string or an iterable over all curves
          in this class.  See
          :meth:`sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field.isogeny_class`
          for more details.

        OUTPUT:

        - Another :class:`IsogenyClass_EC` with the curves reordered
          (and matrices and maps changed as appropriate)

        EXAMPLES::

            sage: isocls = EllipticCurve('15a1').isogeny_class(use_tuple=False)
            sage: print "\n".join([repr(C) for C in isocls.curves])
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 10*x - 10 over Rational Field
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 5*x + 2 over Rational Field
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 + 35*x - 28 over Rational Field
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 135*x - 660 over Rational Field
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 80*x + 242 over Rational Field
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 over Rational Field
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 110*x - 880 over Rational Field
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 2160*x - 39540 over Rational Field
            sage: isocls2 = isocls.reorder('lmfdb')
            sage: print "\n".join([repr(C) for C in isocls2.curves])
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 2160*x - 39540 over Rational Field
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 135*x - 660 over Rational Field
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 110*x - 880 over Rational Field
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 80*x + 242 over Rational Field
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 10*x - 10 over Rational Field
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 5*x + 2 over Rational Field
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 over Rational Field
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 + 35*x - 28 over Rational Field
        """
        if order is None or isinstance(order, basestring) and order == self._algorithm:
            return self
        if isinstance(order, basestring):
            if order == "lmfdb":
                reordered_curves = sorted(self.curves, key = lambda E: E.a_invariants())
            else:
                reordered_curves = list(self.E.isogeny_class(algorithm=order, use_tuple=False))
        elif isinstance(order, (list, tuple, IsogenyClass_EC)):
            reordered_curves = list(order)
            if len(reordered_curves) != len(self.curves):
                raise ValueError("Incorrect length")
        else:
            raise TypeError("order parameter should be a string, list of curves or isogeny class")
        need_perm = self._mat is not None
        cpy = self.copy()
        curves = []
        perm = []
        for E in reordered_curves:
            try:
                j = self.curves.index(E)
            except ValueError:
                try:
                    j = self.curves.index(E.minimal_model())
                except ValueError:
                    raise ValueError("order does not yield a permutation of curves")
            curves.append(self.curves[j])
            if need_perm: perm.append(j+1)
        cpy.curves = tuple(curves)
        if need_perm:
            from sage.groups.perm_gps.permgroup_named import SymmetricGroup
            perm = SymmetricGroup(len(self.curves))(perm)
            cpy._mat = perm.matrix() * self._mat * (~perm).matrix()
            if self._maps is not None:
                n = len(self._maps)
                cpy._maps = [self._maps[perm(i+1)-1] for i in range(n)]
                for i in range(n):
                    cpy._maps[i] = [cpy._maps[i][perm(j+1)-1] for j in range(n)]
        else:
            cpy._mat = None
            cpy._maps = None
        return cpy
開發者ID:CETHop,項目名稱:sage,代碼行數:82,代碼來源:isogeny_class.py


注:本文中的sage.groups.perm_gps.permgroup_named.SymmetricGroup.matrix方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。