當前位置: 首頁>>代碼示例>>Python>>正文


Python permgroup_named.SymmetricGroup類代碼示例

本文整理匯總了Python中sage.groups.perm_gps.permgroup_named.SymmetricGroup的典型用法代碼示例。如果您正苦於以下問題:Python SymmetricGroup類的具體用法?Python SymmetricGroup怎麽用?Python SymmetricGroup使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了SymmetricGroup類的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: reflection_group

    def reflection_group(self, type="matrix"):
        """
        Return the reflection group corresponding to ``self``.

        EXAMPLES::

            sage: C = CartanMatrix(['A',3])
            sage: C.reflection_group()
            Weyl Group of type ['A', 3] (as a matrix group acting on the root space)
        """
        from sage.groups.perm_gps.permgroup_named import SymmetricGroup
        RS = self.root_space()
        G = RS.weyl_group()
        if type == "matrix":
            return G
        elif type == "permutation":
            assert G.is_finite()
            Phi = RS.roots()
            gens = {}
            S = SymmetricGroup(len(Phi))
            for i in self.index_set():
                pi = S([ Phi.index( beta.simple_reflection(i) ) + 1 for beta in Phi ])
                gens[i] = pi
            return S.subgroup( gens[i] for i in gens )
        else:
            raise ValueError("The reflection group is only available as a matrix group or as a permutation group.")
開發者ID:biasse,項目名稱:sage,代碼行數:26,代碼來源:cartan_matrix.py

示例2: SymmetricPresentation

def SymmetricPresentation(n):
    r"""
    Build the Symmetric group of order `n!` as a finitely presented group.

    INPUT:

    - ``n`` -- The size of the underlying set of arbitrary symbols being acted
      on by the Symmetric group of order `n!`.

    OUTPUT:

    Symmetric group as a finite presentation, implementation uses GAP to find an
    isomorphism from a permutation representation to a finitely presented group
    representation. Due to this fact, the exact output presentation may not be
    the same for every method call on a constant ``n``.

    EXAMPLES::

        sage: S4 = groups.presentation.Symmetric(4)
        sage: S4.as_permutation_group().is_isomorphic(SymmetricGroup(4))
        True

    TESTS::

        sage: S = [groups.presentation.Symmetric(i) for i in range(1,4)]; S[0].order()
        1
        sage: S[1].order(), S[2].as_permutation_group().is_isomorphic(DihedralGroup(3))
        (2, True)
        sage: S5 = groups.presentation.Symmetric(5)
        sage: perm_S5 = S5.as_permutation_group(); perm_S5.is_isomorphic(SymmetricGroup(5))
        True
        sage: groups.presentation.Symmetric(8).order()
        40320
    """
    from sage.groups.perm_gps.permgroup_named import SymmetricGroup
    from sage.groups.free_group import _lexi_gen

    n = Integer(n)
    perm_rep = SymmetricGroup(n)
    GAP_fp_rep = libgap.Image(libgap.IsomorphismFpGroupByGenerators(perm_rep, perm_rep.gens()))
    image_gens = GAP_fp_rep.FreeGeneratorsOfFpGroup()
    name_itr = _lexi_gen()  # Python generator object for variable names
    F = FreeGroup([next(name_itr) for x in perm_rep.gens()])
    ret_rls = tuple(
        [F(rel_word.TietzeWordAbstractWord(image_gens).sage()) for rel_word in GAP_fp_rep.RelatorsOfFpGroup()]
    )
    return FinitelyPresentedGroup(F, ret_rls)
開發者ID:sampadsaha5,項目名稱:sage,代碼行數:47,代碼來源:finitely_presented_named.py

示例3: _get_random_ribbon_graph

    def _get_random_ribbon_graph(self):
        r"""
        Return a random ribbon graph with right parameters.
        """
        n = random.randint(self.min_num_seps,self.max_num_seps)
        S = SymmetricGroup(2*n)

        e = S([(2*i+1,2*i+2) for i in xrange(n)])
        f = S.random_element()
        P = PermutationGroup([e,f])

        while not P.is_transitive():
            f = S.random_element()
            P = PermutationGroup([e,f])

        return RibbonGraph(
                 edges=[e(i+1)-1 for i in xrange(2*n)],
                 faces=[f(i+1)-1 for i in xrange(2*n)])
開發者ID:fchapoton,項目名稱:flatsurf-package,代碼行數:18,代碼來源:tests.py

示例4: to_character

    def to_character(self):
        r"""
        Return the character of the representation.

        EXAMPLES:

        The trivial character::

            sage: rho = SymmetricGroupRepresentation([3])
            sage: chi = rho.to_character(); chi
            Character of Symmetric group of order 3! as a permutation group
            sage: chi.values()
            [1, 1, 1]
            sage: all(chi(g) == 1 for g in SymmetricGroup(3))
            True

        The sign character::

            sage: rho = SymmetricGroupRepresentation([1,1,1])
            sage: chi = rho.to_character(); chi
            Character of Symmetric group of order 3! as a permutation group
            sage: chi.values()
            [1, -1, 1]
            sage: all(chi(g) == g.sign() for g in SymmetricGroup(3))
            True

        The defining representation::

            sage: triv = SymmetricGroupRepresentation([4])
            sage: hook = SymmetricGroupRepresentation([3,1])
            sage: def_rep = lambda p : triv(p).block_sum(hook(p)).trace()
            sage: map(def_rep, Permutations(4))
            [4, 2, 2, 1, 1, 2, 2, 0, 1, 0, 0, 1, 1, 0, 2, 1, 0, 0, 0, 1, 1, 2, 0, 0]
            sage: [p.to_matrix().trace() for p in Permutations(4)]
            [4, 2, 2, 1, 1, 2, 2, 0, 1, 0, 0, 1, 1, 0, 2, 1, 0, 0, 0, 1, 1, 2, 0, 0]

        """
        from sage.groups.perm_gps.permgroup_named import SymmetricGroup

        Sym = SymmetricGroup(sum(self._partition))
        values = [self(g).trace() for g in Sym.conjugacy_classes_representatives()]
        return Sym.character(values)
開發者ID:sampadsaha5,項目名稱:sage,代碼行數:42,代碼來源:symmetric_group_representations.py

示例5: _get_random_cylinder_diagram

    def _get_random_cylinder_diagram(self):
        r"""
        Return a random cylinder diagram with right parameters
        """
        test = False
        while test:
            n = random.randint(self.min_num_seps,self.max_num_seps)
            S = SymmetricGroup(2*n)

            bot = S.random_element()
            b = [[i-1 for i in c] for c in bot.cycle_tuples(singletons=True)]

            p = Partitions(2*n,length=len(b)).random_element()
            top = S([i+1 for i in canonical_perm(p)])
            t = [[i-1 for i in c] for c in top.cycle_tuples(singletons=True)]
            prandom.shuffle(t)

            c = CylinderDiagram(zip(b,t))
            test = c.is_connected()

        return c
開發者ID:fchapoton,項目名稱:flatsurf-package,代碼行數:21,代碼來源:tests.py

示例6: CyclicCodeFromGeneratingPolynomial

def CyclicCodeFromGeneratingPolynomial(n,g,ignore=True):
    r"""
    If g is a polynomial over GF(q) which divides `x^n-1` then
    this constructs the code "generated by g" (ie, the code associated
    with the principle ideal `gR` in the ring
    `R = GF(q)[x]/(x^n-1)` in the usual way).

    The option "ignore" says to ignore the condition that (a) the
    characteristic of the base field does not divide the length (the
    usual assumption in the theory of cyclic codes), and (b) `g`
    must divide `x^n-1`. If ignore=True, instead of returning
    an error, a code generated by `gcd(x^n-1,g)` is created.

    EXAMPLES::

        sage: P.<x> = PolynomialRing(GF(3),"x")
        sage: g = x-1
        sage: C = codes.CyclicCodeFromGeneratingPolynomial(4,g); C
        Linear code of length 4, dimension 3 over Finite Field of size 3
        sage: P.<x> = PolynomialRing(GF(4,"a"),"x")
        sage: g = x^3+1
        sage: C = codes.CyclicCodeFromGeneratingPolynomial(9,g); C
        Linear code of length 9, dimension 6 over Finite Field in a of size 2^2
        sage: P.<x> = PolynomialRing(GF(2),"x")
        sage: g = x^3+x+1
        sage: C = codes.CyclicCodeFromGeneratingPolynomial(7,g); C
        Linear code of length 7, dimension 4 over Finite Field of size 2
        sage: C.generator_matrix()
        [1 1 0 1 0 0 0]
        [0 1 1 0 1 0 0]
        [0 0 1 1 0 1 0]
        [0 0 0 1 1 0 1]
        sage: g = x+1
        sage: C = codes.CyclicCodeFromGeneratingPolynomial(4,g); C
        Linear code of length 4, dimension 3 over Finite Field of size 2
        sage: C.generator_matrix()
        [1 1 0 0]
        [0 1 1 0]
        [0 0 1 1]

    On the other hand, CyclicCodeFromPolynomial(4,x) will produce a
    ValueError including a traceback error message: "`x` must
    divide `x^4 - 1`". You will also get a ValueError if you
    type

    ::

        sage: P.<x> = PolynomialRing(GF(4,"a"),"x")
        sage: g = x^2+1

    followed by CyclicCodeFromGeneratingPolynomial(6,g). You will also
    get a ValueError if you type

    ::

        sage: P.<x> = PolynomialRing(GF(3),"x")
        sage: g = x^2-1
        sage: C = codes.CyclicCodeFromGeneratingPolynomial(5,g); C
        Linear code of length 5, dimension 4 over Finite Field of size 3

    followed by C = CyclicCodeFromGeneratingPolynomial(5,g,False), with
    a traceback message including "`x^2 + 2` must divide
    `x^5 - 1`".
    """
    P = g.parent()
    x = P.gen()
    F = g.base_ring()
    p = F.characteristic()
    if not(ignore) and p.divides(n):
        raise ValueError('The characteristic %s must not divide %s'%(p,n))
    if not(ignore) and not(g.divides(x**n-1)):
        raise ValueError('%s must divide x^%s - 1'%(g,n))
    gn = GCD([g,x**n-1])
    d = gn.degree()
    coeffs = Sequence(gn.list())
    r1 = Sequence(coeffs+[0]*(n - d - 1))
    Sn = SymmetricGroup(n)
    s = Sn.gens()[0] # assumes 1st gen of S_n is (1,2,...,n)
    rows = [permutation_action(s**(-i),r1) for i in range(n-d)]
    MS = MatrixSpace(F,n-d,n)
    return LinearCode(MS(rows))
開發者ID:aaditya-thakkar,項目名稱:sage,代碼行數:81,代碼來源:code_constructions.py

示例7: reorder

    def reorder(self, order):
        """
        Return a new isogeny class with the curves reordered.

        INPUT:

        - ``order`` -- None, a string or an iterable over all curves
          in this class.  See
          :meth:`sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field.isogeny_class`
          for more details.

        OUTPUT:

        - Another :class:`IsogenyClass_EC` with the curves reordered
          (and matrices and maps changed as appropriate)

        EXAMPLES::

            sage: isocls = EllipticCurve('15a1').isogeny_class(use_tuple=False)
            sage: print "\n".join([repr(C) for C in isocls.curves])
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 10*x - 10 over Rational Field
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 5*x + 2 over Rational Field
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 + 35*x - 28 over Rational Field
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 135*x - 660 over Rational Field
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 80*x + 242 over Rational Field
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 over Rational Field
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 110*x - 880 over Rational Field
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 2160*x - 39540 over Rational Field
            sage: isocls2 = isocls.reorder('lmfdb')
            sage: print "\n".join([repr(C) for C in isocls2.curves])
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 2160*x - 39540 over Rational Field
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 135*x - 660 over Rational Field
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 110*x - 880 over Rational Field
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 80*x + 242 over Rational Field
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 10*x - 10 over Rational Field
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 5*x + 2 over Rational Field
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 over Rational Field
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 + 35*x - 28 over Rational Field
        """
        if order is None or isinstance(order, basestring) and order == self._algorithm:
            return self
        if isinstance(order, basestring):
            if order == "lmfdb":
                reordered_curves = sorted(self.curves, key = lambda E: E.a_invariants())
            else:
                reordered_curves = list(self.E.isogeny_class(algorithm=order, use_tuple=False))
        elif isinstance(order, (list, tuple, IsogenyClass_EC)):
            reordered_curves = list(order)
            if len(reordered_curves) != len(self.curves):
                raise ValueError("Incorrect length")
        else:
            raise TypeError("order parameter should be a string, list of curves or isogeny class")
        need_perm = self._mat is not None
        cpy = self.copy()
        curves = []
        perm = []
        for E in reordered_curves:
            try:
                j = self.curves.index(E)
            except ValueError:
                try:
                    j = self.curves.index(E.minimal_model())
                except ValueError:
                    raise ValueError("order does not yield a permutation of curves")
            curves.append(self.curves[j])
            if need_perm: perm.append(j+1)
        cpy.curves = tuple(curves)
        if need_perm:
            from sage.groups.perm_gps.permgroup_named import SymmetricGroup
            perm = SymmetricGroup(len(self.curves))(perm)
            cpy._mat = perm.matrix() * self._mat * (~perm).matrix()
            if self._maps is not None:
                n = len(self._maps)
                cpy._maps = [self._maps[perm(i+1)-1] for i in range(n)]
                for i in range(n):
                    cpy._maps[i] = [cpy._maps[i][perm(j+1)-1] for j in range(n)]
        else:
            cpy._mat = None
            cpy._maps = None
        return cpy
開發者ID:CETHop,項目名稱:sage,代碼行數:80,代碼來源:isogeny_class.py


注:本文中的sage.groups.perm_gps.permgroup_named.SymmetricGroup類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。