本文整理匯總了Python中sage.groups.perm_gps.permgroup_named.SymmetricGroup.conjugacy_classes_representatives方法的典型用法代碼示例。如果您正苦於以下問題:Python SymmetricGroup.conjugacy_classes_representatives方法的具體用法?Python SymmetricGroup.conjugacy_classes_representatives怎麽用?Python SymmetricGroup.conjugacy_classes_representatives使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sage.groups.perm_gps.permgroup_named.SymmetricGroup
的用法示例。
在下文中一共展示了SymmetricGroup.conjugacy_classes_representatives方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: to_character
# 需要導入模塊: from sage.groups.perm_gps.permgroup_named import SymmetricGroup [as 別名]
# 或者: from sage.groups.perm_gps.permgroup_named.SymmetricGroup import conjugacy_classes_representatives [as 別名]
def to_character(self):
r"""
Return the character of the representation.
EXAMPLES:
The trivial character::
sage: rho = SymmetricGroupRepresentation([3])
sage: chi = rho.to_character(); chi
Character of Symmetric group of order 3! as a permutation group
sage: chi.values()
[1, 1, 1]
sage: all(chi(g) == 1 for g in SymmetricGroup(3))
True
The sign character::
sage: rho = SymmetricGroupRepresentation([1,1,1])
sage: chi = rho.to_character(); chi
Character of Symmetric group of order 3! as a permutation group
sage: chi.values()
[1, -1, 1]
sage: all(chi(g) == g.sign() for g in SymmetricGroup(3))
True
The defining representation::
sage: triv = SymmetricGroupRepresentation([4])
sage: hook = SymmetricGroupRepresentation([3,1])
sage: def_rep = lambda p : triv(p).block_sum(hook(p)).trace()
sage: map(def_rep, Permutations(4))
[4, 2, 2, 1, 1, 2, 2, 0, 1, 0, 0, 1, 1, 0, 2, 1, 0, 0, 0, 1, 1, 2, 0, 0]
sage: [p.to_matrix().trace() for p in Permutations(4)]
[4, 2, 2, 1, 1, 2, 2, 0, 1, 0, 0, 1, 1, 0, 2, 1, 0, 0, 0, 1, 1, 2, 0, 0]
"""
from sage.groups.perm_gps.permgroup_named import SymmetricGroup
Sym = SymmetricGroup(sum(self._partition))
values = [self(g).trace() for g in Sym.conjugacy_classes_representatives()]
return Sym.character(values)