本文整理匯總了Python中sage.combinat.sf.sf.SymmetricFunctions.schur方法的典型用法代碼示例。如果您正苦於以下問題:Python SymmetricFunctions.schur方法的具體用法?Python SymmetricFunctions.schur怎麽用?Python SymmetricFunctions.schur使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sage.combinat.sf.sf.SymmetricFunctions
的用法示例。
在下文中一共展示了SymmetricFunctions.schur方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from sage.combinat.sf.sf import SymmetricFunctions [as 別名]
# 或者: from sage.combinat.sf.sf.SymmetricFunctions import schur [as 別名]
def __init__(self, w, n, x = None):
r"""
EXAMPLES::
sage: B = crystals.AffineFactorization([[3,2],[2]],4,x=0,k=3)
Traceback (most recent call last):
...
ValueError: x cannot be in reduced word of s0*s3*s2
sage: B = crystals.AffineFactorization([[3,2],[2]],4,k=3)
sage: B.x
1
sage: B.w
s0*s3*s2
sage: B.k
3
sage: B.n
4
TESTS::
sage: W = WeylGroup(['A',3,1], prefix='s')
sage: w = W.from_reduced_word([2,3,2,1])
sage: B = crystals.AffineFactorization(w,3)
sage: TestSuite(B).run()
"""
Parent.__init__(self, category = ClassicalCrystals())
self.n = n
self.k = w.parent().n-1
self.w = w
cartan_type = CartanType(['A',n-1])
self._cartan_type = cartan_type
from sage.combinat.sf.sf import SymmetricFunctions
from sage.rings.all import QQ
Sym = SymmetricFunctions(QQ)
s = Sym.schur()
support = s(w.stanley_symmetric_function()).support()
support = [ [0]*(n-len(mu))+[mu[len(mu)-i-1] for i in range(len(mu))] for mu in support]
generators = [tuple(p) for mu in support for p in affine_factorizations(w,n,mu)]
#generators = [tuple(p) for p in affine_factorizations(w, n)]
self.module_generators = [self(t) for t in generators]
if x is None:
if generators != []:
x = min( set(range(self.k+1)).difference(set(
sum([i.reduced_word() for i in generators[0]],[]))))
else:
x = 0
if x in set(w.reduced_word()):
raise ValueError("x cannot be in reduced word of {}".format(w))
self.x = x