本文整理匯總了Python中sage.combinat.sf.sf.SymmetricFunctions.h方法的典型用法代碼示例。如果您正苦於以下問題:Python SymmetricFunctions.h方法的具體用法?Python SymmetricFunctions.h怎麽用?Python SymmetricFunctions.h使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sage.combinat.sf.sf.SymmetricFunctions
的用法示例。
在下文中一共展示了SymmetricFunctions.h方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: K_k_Schur_non_commutative_variables
# 需要導入模塊: from sage.combinat.sf.sf import SymmetricFunctions [as 別名]
# 或者: from sage.combinat.sf.sf.SymmetricFunctions import h [as 別名]
def K_k_Schur_non_commutative_variables(self,la):
r"""
Returns the K-`k`-Schur function, as embedded inside the affine zero Hecke algebra.
INPUT:
- ``la`` -- A `k`-bounded Partition
OUTPUT:
- An element of the affine zero Hecke algebra.
EXAMPLES::
sage: g = SymmetricFunctions(QQ).kBoundedSubspace(3,1).K_kschur()
sage: g.K_k_Schur_non_commutative_variables([2,1])
T3*T1*T0 + T1*T2*T0 + T3*T2*T0 - T2*T0 + T0*T1*T0 + T2*T0*T1 + T0*T3*T0 + T2*T0*T3 + T0*T3*T1 + T2*T3*T2 - T3*T1 + T2*T3*T1 + T3*T1*T2 + T1*T2*T1
sage: g.K_k_Schur_non_commutative_variables([])
1
sage: g.K_k_Schur_non_commutative_variables([4,1])
Traceback (most recent call last):
...
ValueError: Partition should be 3-bounded
"""
SF = SymmetricFunctions(self.base_ring())
h = SF.h()
S = h(self._g_to_kh_on_basis(la)).support()
return sum(h(self._g_to_kh_on_basis(la)).coefficient(x)*self.homogeneous_basis_noncommutative_variables_zero_Hecke(x) for x in S)
示例2: __init__
# 需要導入模塊: from sage.combinat.sf.sf import SymmetricFunctions [as 別名]
# 或者: from sage.combinat.sf.sf.SymmetricFunctions import h [as 別名]
def __init__(self, R):
"""
Initialize ``self``.
EXAMPLES::
sage: NCSymD1 = SymmetricFunctionsNonCommutingVariablesDual(FiniteField(23))
sage: NCSymD2 = SymmetricFunctionsNonCommutingVariablesDual(Integers(23))
sage: TestSuite(SymmetricFunctionsNonCommutingVariables(QQ).dual()).run()
"""
# change the line below to assert(R in Rings()) once MRO issues from #15536, #15475 are resolved
assert(R in Fields() or R in Rings()) # side effect of this statement assures MRO exists for R
self._base = R # Won't be needed once CategoryObject won't override base_ring
category = GradedHopfAlgebras(R) # TODO: .Commutative()
Parent.__init__(self, category=category.WithRealizations())
# Bases
w = self.w()
# Embedding of Sym in the homogeneous bases into DNCSym in the w basis
Sym = SymmetricFunctions(self.base_ring())
Sym_h_to_w = Sym.h().module_morphism(w.sum_of_partitions,
triangular='lower',
inverse_on_support=w._set_par_to_par,
codomain=w, category=category)
Sym_h_to_w.register_as_coercion()
self.to_symmetric_function = Sym_h_to_w.section()
示例3: __init__
# 需要導入模塊: from sage.combinat.sf.sf import SymmetricFunctions [as 別名]
# 或者: from sage.combinat.sf.sf.SymmetricFunctions import h [as 別名]
def __init__(self, R):
"""
Initialize ``self``.
EXAMPLES::
sage: TestSuite(SymmetricFunctionsNonCommutingVariables(QQ).dual()).run()
"""
self._base = R # Won't be needed once CategoryObject won't override base_ring
category = GradedHopfAlgebras(R) # TODO: .Commutative()
Parent.__init__(self, category=category.WithRealizations())
# Bases
w = self.w()
# Embedding of Sym in the homogeneous bases into DNCSym in the w basis
Sym = SymmetricFunctions(self.base_ring())
Sym_h_to_w = Sym.h().module_morphism(
w.sum_of_partitions, triangular="lower", inverse_on_support=w._set_par_to_par, codomain=w, category=category
)
Sym_h_to_w.register_as_coercion()
self.to_symmetric_function = Sym_h_to_w.section()