當前位置: 首頁>>代碼示例>>Python>>正文


Python SymmetricFunctions.h方法代碼示例

本文整理匯總了Python中sage.combinat.sf.sf.SymmetricFunctions.h方法的典型用法代碼示例。如果您正苦於以下問題:Python SymmetricFunctions.h方法的具體用法?Python SymmetricFunctions.h怎麽用?Python SymmetricFunctions.h使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sage.combinat.sf.sf.SymmetricFunctions的用法示例。


在下文中一共展示了SymmetricFunctions.h方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: K_k_Schur_non_commutative_variables

# 需要導入模塊: from sage.combinat.sf.sf import SymmetricFunctions [as 別名]
# 或者: from sage.combinat.sf.sf.SymmetricFunctions import h [as 別名]
    def K_k_Schur_non_commutative_variables(self,la):
        r"""
        Returns the K-`k`-Schur function, as embedded inside the affine zero Hecke algebra.

        INPUT:

        - ``la`` -- A `k`-bounded Partition

        OUTPUT:

        - An element of the affine zero Hecke algebra.

        EXAMPLES::

            sage: g = SymmetricFunctions(QQ).kBoundedSubspace(3,1).K_kschur()
            sage: g.K_k_Schur_non_commutative_variables([2,1])
            T3*T1*T0 + T1*T2*T0 + T3*T2*T0 - T2*T0 + T0*T1*T0 + T2*T0*T1 + T0*T3*T0 + T2*T0*T3 + T0*T3*T1 + T2*T3*T2 - T3*T1 + T2*T3*T1 + T3*T1*T2 + T1*T2*T1
            sage: g.K_k_Schur_non_commutative_variables([])
            1
            sage: g.K_k_Schur_non_commutative_variables([4,1])
            Traceback (most recent call last):
            ...
            ValueError: Partition should be 3-bounded
        """
        SF = SymmetricFunctions(self.base_ring())
        h = SF.h()
        S = h(self._g_to_kh_on_basis(la)).support()
        return sum(h(self._g_to_kh_on_basis(la)).coefficient(x)*self.homogeneous_basis_noncommutative_variables_zero_Hecke(x) for x in S)
開發者ID:chos9,項目名稱:sage,代碼行數:30,代碼來源:new_kschur.py

示例2: __init__

# 需要導入模塊: from sage.combinat.sf.sf import SymmetricFunctions [as 別名]
# 或者: from sage.combinat.sf.sf.SymmetricFunctions import h [as 別名]
    def __init__(self, R):
        """
        Initialize ``self``.

        EXAMPLES::

            sage: NCSymD1 = SymmetricFunctionsNonCommutingVariablesDual(FiniteField(23))
            sage: NCSymD2 = SymmetricFunctionsNonCommutingVariablesDual(Integers(23))
            sage: TestSuite(SymmetricFunctionsNonCommutingVariables(QQ).dual()).run()
        """
        # change the line below to assert(R in Rings()) once MRO issues from #15536, #15475 are resolved
        assert(R in Fields() or R in Rings()) # side effect of this statement assures MRO exists for R
        self._base = R # Won't be needed once CategoryObject won't override base_ring
        category = GradedHopfAlgebras(R)  # TODO: .Commutative()
        Parent.__init__(self, category=category.WithRealizations())

        # Bases
        w = self.w()

        # Embedding of Sym in the homogeneous bases into DNCSym in the w basis
        Sym = SymmetricFunctions(self.base_ring())
        Sym_h_to_w = Sym.h().module_morphism(w.sum_of_partitions,
                                             triangular='lower',
                                             inverse_on_support=w._set_par_to_par,
                                             codomain=w, category=category)
        Sym_h_to_w.register_as_coercion()
        self.to_symmetric_function = Sym_h_to_w.section()
開發者ID:sagemath,項目名稱:sage,代碼行數:29,代碼來源:dual.py

示例3: __init__

# 需要導入模塊: from sage.combinat.sf.sf import SymmetricFunctions [as 別名]
# 或者: from sage.combinat.sf.sf.SymmetricFunctions import h [as 別名]
    def __init__(self, R):
        """
        Initialize ``self``.

        EXAMPLES::

            sage: TestSuite(SymmetricFunctionsNonCommutingVariables(QQ).dual()).run()
        """
        self._base = R  # Won't be needed once CategoryObject won't override base_ring
        category = GradedHopfAlgebras(R)  # TODO: .Commutative()
        Parent.__init__(self, category=category.WithRealizations())

        # Bases
        w = self.w()

        # Embedding of Sym in the homogeneous bases into DNCSym in the w basis
        Sym = SymmetricFunctions(self.base_ring())
        Sym_h_to_w = Sym.h().module_morphism(
            w.sum_of_partitions, triangular="lower", inverse_on_support=w._set_par_to_par, codomain=w, category=category
        )
        Sym_h_to_w.register_as_coercion()
        self.to_symmetric_function = Sym_h_to_w.section()
開發者ID:JasYoung314,項目名稱:sage,代碼行數:24,代碼來源:dual.py


注:本文中的sage.combinat.sf.sf.SymmetricFunctions.h方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。