本文整理匯總了Python中sage.combinat.sf.sf.SymmetricFunctions.kBoundedQuotient方法的典型用法代碼示例。如果您正苦於以下問題:Python SymmetricFunctions.kBoundedQuotient方法的具體用法?Python SymmetricFunctions.kBoundedQuotient怎麽用?Python SymmetricFunctions.kBoundedQuotient使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sage.combinat.sf.sf.SymmetricFunctions
的用法示例。
在下文中一共展示了SymmetricFunctions.kBoundedQuotient方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _DualGrothMatrix
# 需要導入模塊: from sage.combinat.sf.sf import SymmetricFunctions [as 別名]
# 或者: from sage.combinat.sf.sf.SymmetricFunctions import kBoundedQuotient [as 別名]
def _DualGrothMatrix(self, m):
r"""
Returns the change of basis matrix between the K_kschur basis and the `k`-bounded
homogeneous basis.
INPUT:
- ``m`` -- An integer
OUTPUT:
- A matrix.
EXAMPLES::
sage: g = SymmetricFunctions(QQ).kBoundedSubspace(3,1).K_kschur()
sage: g._DualGrothMatrix(3)
[ 1 1 1 0 0 0 0]
[ 0 1 2 0 0 0 0]
[ 0 0 1 0 0 0 0]
[ 0 -1 -2 1 1 0 0]
[ 0 0 -2 0 1 0 0]
[ 0 0 1 0 -1 1 0]
[ 0 0 0 0 0 0 1]
sage: g._DualGrothMatrix(0)
[1]
"""
new_mat = []
Sym = SymmetricFunctions(self.base_ring())
Q = Sym.kBoundedQuotient(self.k,t=1)
mon = Q.km()
G = Q.AffineGrothendieckPolynomial
for i in range(m+1):
for x in Partitions(m-i, max_part = self.k):
f = mon(G(x,m))
vec = []
for j in range(m+1):
for y in Partitions(m-j, max_part = self.k):
vec.append(f.coefficient(y))
new_mat.append(vec)
from sage.matrix.constructor import Matrix
return Matrix(new_mat)