本文整理匯總了Python中rbm.RBM.reconstruct_from_input方法的典型用法代碼示例。如果您正苦於以下問題:Python RBM.reconstruct_from_input方法的具體用法?Python RBM.reconstruct_from_input怎麽用?Python RBM.reconstruct_from_input使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類rbm.RBM
的用法示例。
在下文中一共展示了RBM.reconstruct_from_input方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: CNN
# 需要導入模塊: from rbm import RBM [as 別名]
# 或者: from rbm.RBM import reconstruct_from_input [as 別名]
cnn2 = CNN(cnn1.output(), filter_shape, filter_shift_list[1], node_shape[1], node_shape[2], pre_train_lr, pre_train_epoch)
output_list = cnn2.output()
saveImage(output_list, node_shape[2], 'cnn2_before_train')
cnn2.pre_train()
output_list = cnn2.output()
saveImage(output_list, node_shape[2], 'cnn2_after_train')
rbm_size_list = (680, 340, 170, 85, 42, 21, 10, 3)
# def __init__(self, W, input, data_size,input_size, output_size, isDropout):
rbm1 = RBM(None, cnn2.output(), file_num, rbm_size_list[0], rbm_size_list[1], False)
for i in xrange(pre_train_epoch):
print 'rbm1 pre_train:' + str(i)
rbm1.contrast_divergence()
reinput = rbm1.reconstruct_from_input(rbm1.input)
saveImage(reinput, node_shape[2], 'rbm1_after_train')
saveW(rbm1.getW(), 'rbm1_after_train')
rbm2 = RBM(None, rbm1.output(), file_num, rbm_size_list[1], rbm_size_list[2], False)
for i in xrange(pre_train_epoch):
print 'rbm2 pre_train:' + str(i)
rbm2.contrast_divergence()
reinput = rbm2.reconstruct_from_input(rbm2.input)
reinput = rbm1.reconstruct_from_output(reinput)
saveImage(reinput, node_shape[2], 'rbm2_after_train')
saveW(rbm2.getW(), 'rbm2_after_train')
rbm3 = RBM(None, rbm2.output(), file_num, rbm_size_list[2], rbm_size_list[3], False)
for i in xrange(pre_train_epoch):
print 'rbm3 pre_train:' + str(i)
示例2: saveFeatures
# 需要導入模塊: from rbm import RBM [as 別名]
# 或者: from rbm.RBM import reconstruct_from_input [as 別名]
if not os.path.exists(dir_name):
os.mkdir(dir_name)
os.chdir(dir_name)
# Feature
output = rbm1.output_from_input(rbm1.input)
output = rbm2.output_from_input(output)
output = rbm3.output_from_input(output)
output = rbm4.output_from_input(output)
output = rbm5.output_from_input(output)
output = rbm6.output_from_input(output)
output = rbm7.output_from_input(output)
saveFeatures(output)
# RBM1 Save
reinput = rbm1.reconstruct_from_input(rbm1.input)
saveImage(reinput, node_shape[2], 'rbm1_after_train')
saveW(rbm1.getW(), 'rbm1_after_train')
# RBM2 Save
output = rbm1.output_from_input(rbm1.input)
output = rbm2.output_from_input(output)
reinput = rbm2.reconstruct_from_output(output)
reinput = rbm1.reconstruct_from_output(reinput)
saveImage(reinput, node_shape[2], 'rbm2_after_train')
saveW(rbm2.getW(), 'rbm2_after_train')
# RBM3 Save
output = rbm1.output_from_input(rbm1.input)
output = rbm2.output_from_input(output)
output = rbm3.output_from_input(output)