當前位置: 首頁>>代碼示例>>Python>>正文


Python RBM.fit方法代碼示例

本文整理匯總了Python中rbm.RBM.fit方法的典型用法代碼示例。如果您正苦於以下問題:Python RBM.fit方法的具體用法?Python RBM.fit怎麽用?Python RBM.fit使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在rbm.RBM的用法示例。


在下文中一共展示了RBM.fit方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: fit_network

# 需要導入模塊: from rbm import RBM [as 別名]
# 或者: from rbm.RBM import fit [as 別名]
    def fit_network(self, X, labels=None):
        if labels is None:
            labels = numpy.zeros((X.shape[0], 2))
        self.layers = []
        temp_X = X
        for j in range(self.num_layers):

            print "\nTraining Layer %i" % (j + 1)
            print "components: %i" % self.components[j]
            print "batch_size: %i" % self.batch_size[j]
            print "learning_rate: %0.3f" % self.learning_rate[j]
            print "bias_learning_rate: %0.3f" % self.bias_learning_rate[j]
            print "epochs: %i" % self.epochs[j]
            print "Sparsity: %s" % str(self.sparsity_rate[j])
            print "Sparsity Phi: %s" % str(self.phi)
            if j != 0:
                self.plot_weights = False

            model = RBM(n_components=self.components[j], batch_size=self.batch_size[j],
                        learning_rate=self.learning_rate[j], regularization_mu=self.sparsity_rate[j],
                        n_iter=self.epochs[j], verbose=True, learning_rate_bias=self.bias_learning_rate[j],
                        plot_weights=self.plot_weights, plot_histograms=self.plot_histograms, phi=self.phi)

            if j + 1 == self.num_layers and labels is not None:
                model.fit(numpy.asarray(temp_X), numpy.asarray(labels))
            else:
                model.fit(numpy.asarray(temp_X))

            temp_X = model._mean_hiddens(temp_X)  # hidden layer given visable units
            print "Trained Layer %i\n" % (j + 1)

            self.layers.append(model)
開發者ID:tjvandal,項目名稱:deep-learning,代碼行數:34,代碼來源:dbn.py

示例2: pretrain_rbm_layers

# 需要導入模塊: from rbm import RBM [as 別名]
# 或者: from rbm.RBM import fit [as 別名]
def pretrain_rbm_layers(v, validation_v=None, n_hidden=[], gibbs_steps=[], batch_size=[], num_epochs=[], learning_rate=[], probe_epochs=[]):
    rbm_layers = []
    n_rbm = len(n_hidden)
    # create rbm layers
    for i in range(n_rbm):
        rbm = RBM(n_hidden=n_hidden[i],
                    gibbs_steps=gibbs_steps[i],
                    batch_size=batch_size[i],
                    num_epochs=num_epochs[i],
                    learning_rate=learning_rate[i],
                    probe_epochs=probe_epochs[i])
        rbm_layers.append(rbm)
    # pretrain rbm layers
    input = v
    validation_input = validation_v
    for rbm, i in zip(rbm_layers, range(len(rbm_layers))):
        print '### pretraining RBM Layer {i}'.format(i=i)
        rbm.fit(input, validation_input)
        output = rbm.sample_h_given_v(input, rbm.params['W'], rbm.params['c'])
        if validation_input is not None:
            validation_output = rbm.sample_h_given_v(validation_input, rbm.params['W'], rbm.params['c'])
        else:
            validation_output = None
        input = output
        validation_input = validation_output
    return rbm_layers
開發者ID:taiqing,項目名稱:tensorflowNN,代碼行數:28,代碼來源:dbn_no_finetune.py

示例3: RBM

# 需要導入模塊: from rbm import RBM [as 別名]
# 或者: from rbm.RBM import fit [as 別名]
             'step_config': 1,
             'learning_rate': 0.1,
             'weight_decay': 0}

# initialize model object
rbm = RBM(layers=layers)

if args.model_file:
    assert os.path.exists(args.model_file), '%s not found' % args.model_file
    logger.info('loading initial model state from %s' % args.model_file)
    rbm.load_weights(args.model_file)

# setup standard fit callbacks
callbacks = Callbacks(rbm, train_set, output_file=args.output_file,
                      progress_bar=args.progress_bar)

# add a callback ot calculate

if args.serialize > 0:
    # add callback for saving checkpoint file
    # every args.serialize epchs
    checkpoint_schedule = args.serialize
    checkpoint_model_path = args.save_path
    callbacks.add_serialize_callback(checkpoint_schedule, checkpoint_model_path)

rbm.fit(train_set, optimizer=optimizer, num_epochs=num_epochs, callbacks=callbacks)

for mb_idx, (x_val, y_val) in enumerate(valid_set):
    hidden = rbm.fprop(x_val)
    break
開發者ID:yeahrmek,項目名稱:3dShapeNets,代碼行數:32,代碼來源:mnist_multilayer.py

示例4: GlorotUniform

# 需要導入模塊: from rbm import RBM [as 別名]
# 或者: from rbm.RBM import fit [as 別名]
              'sparse_cost': 0.001,
              'sparse_target': 0.01,
              'persistant': False,
              'kPCD': 1,
              'use_fast_weights': False
              }
n_epochs = 1

init = GlorotUniform()

# it seems that the data have shape 30x30x30, though I think it should be 24 with padding=2
layers = [RBMConvolution3D([6, 6, 6, 48], strides=2, padding=0, init=init, name='l1_conv'),
          RBMConvolution3D([5, 5, 5, 160], strides=2, padding=0, init=init, name='l2_conv'),
          RBMConvolution3D([4, 4, 4, 512], strides=2, padding=0, init=init, name='l3_conv'),
          RBMLayer(1200, init=init, name='l4_rbm'),
          RBMLayerWithLabels(4000, n_classes, name='l4_rbm_with_labels')]




rbm = RBM(layers=layers)

# callbacks = Callbacks(rbm, data, output_file='./output.hdf5')
 callbacks = Callbacks(rbm, data)


t = time.time()
rbm.fit(data, optimizer=parameters, num_epochs=n_epochs, callbacks=callbacks)
t = time.time() - t
print "Training time: ", t
開發者ID:yeahrmek,項目名稱:3dShapeNets,代碼行數:32,代碼來源:pretrain.py

示例5: expit

# 需要導入模塊: from rbm import RBM [as 別名]
# 或者: from rbm.RBM import fit [as 別名]
# In[6]:

shape = observed_data.variables["Prcp"][:].shape
lt = 176-1
ln = 23-1
y = observed_data.variables["Prcp"][:, lt, ln]
normalized_gridded = (gridded - gridded[:400].mean(axis=0)) / gridded[:400].std(axis=0)
#normalized_gridded = (normalized_gridded.T - normalized_gridded.T.mean(axis=0)) / normalized_gridded.T.std(axis=0)
#normalized_gridded = normalized_gridded.T

def expit(x, beta=1):
    return 1 / (1 + numpy.exp(-beta * x))

squashed_gridded = expit(normalized_gridded, beta=1)
height, bins = numpy.histogram(squashed_gridded, bins=100)
pyplot.bar(bins[:-1], height, width=1/100.)

pyplot.imshow(squashed_gridded[13].reshape(nlat,nlon))


# In[7]:

boltzmann = RBM(n_iter=100, plot_histograms=True, verbose=True, n_components=500)
boltzmann.fit(squashed_gridded)


# In[ ]:



開發者ID:tjvandal,項目名稱:deeply-downscaling,代碼行數:29,代碼來源:RBM+Climate.py


注:本文中的rbm.RBM.fit方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。