當前位置: 首頁>>代碼示例>>Python>>正文


Python OrderedDict.update方法代碼示例

本文整理匯總了Python中pylearn2.compat.OrderedDict.update方法的典型用法代碼示例。如果您正苦於以下問題:Python OrderedDict.update方法的具體用法?Python OrderedDict.update怎麽用?Python OrderedDict.update使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pylearn2.compat.OrderedDict的用法示例。


在下文中一共展示了OrderedDict.update方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_gradients

# 需要導入模塊: from pylearn2.compat import OrderedDict [as 別名]
# 或者: from pylearn2.compat.OrderedDict import update [as 別名]
    def get_gradients(self, model, data, ** kwargs):
        indiv_results = []
        composite_specs, mapping = self.get_composite_specs_and_mapping(model)
        nested_data = mapping.nest(data)
        for cost, cost_data in safe_zip(self.costs, nested_data):
            result = cost.get_gradients(model, cost_data, ** kwargs)
            indiv_results.append(result)

        grads = OrderedDict()
        updates = OrderedDict()
        params = model.get_params()

        for coeff, packed in zip(self.coeffs, indiv_results):
            g, u = packed
            for param in g:
                if param not in params:
                    raise ValueError("A shared variable (" +
                                     str(param) +
                                     ") that is not a parameter appeared "
                                     "a cost gradient dictionary.")
            for param in g:
                assert param.ndim == g[param].ndim
                v = coeff * g[param]
                if param not in grads:
                    grads[param] = v
                else:
                    grads[param] = grads[param] + v
                assert grads[param].ndim == param.ndim
            assert not any([state in updates for state in u])
            assert not any([state in params for state in u])
            updates.update(u)

        return grads, updates
開發者ID:nitbix,項目名稱:pylearn2,代碼行數:35,代碼來源:cost.py

示例2: get_monitoring_channels

# 需要導入模塊: from pylearn2.compat import OrderedDict [as 別名]
# 或者: from pylearn2.compat.OrderedDict import update [as 別名]
    def get_monitoring_channels(self, model, data, ** kwargs):
        self.get_data_specs(model)[0].validate(data)
        rval = OrderedDict()
        composite_specs, mapping = self.get_composite_specs_and_mapping(model)
        nested_data = mapping.nest(data)

        for i, cost in enumerate(self.costs):
            cost_data = nested_data[i]
            try:
                channels = cost.get_monitoring_channels(model, cost_data,
                                                        **kwargs)
                rval.update(channels)
            except TypeError:
                reraise_as(Exception('SumOfCosts.get_monitoring_channels '
                                     'encountered TypeError while calling {0}'
                                     '.get_monitoring_channels'.format(
                                         type(cost))))

            value = cost.expr(model, cost_data, ** kwargs)
            if value is not None:
                name = ''
                if hasattr(value, 'name') and value.name is not None:
                    name = '_' + value.name
                rval['term_' + str(i) + name] = value

        return rval
開發者ID:nitbix,項目名稱:pylearn2,代碼行數:28,代碼來源:cost.py

示例3: get_gradients

# 需要導入模塊: from pylearn2.compat import OrderedDict [as 別名]
# 或者: from pylearn2.compat.OrderedDict import update [as 別名]
    def get_gradients(self, model, data, **kwargs):
        cost = self._cost(model, data, **kwargs)

        params = list(model.get_params())

        grads = T.grad(cost, params, disconnected_inputs='ignore',
                       consider_constant=[self.sampler.particles])

        gradients = OrderedDict(izip(params, grads))

        updates = OrderedDict()

        sampler_updates = self.sampler.updates()
        updates.update(sampler_updates)
        return gradients, updates
開發者ID:ASAPPinc,項目名稱:pylearn2,代碼行數:17,代碼來源:ebm_estimation.py

示例4: get_lr_scalers

# 需要導入模塊: from pylearn2.compat import OrderedDict [as 別名]
# 或者: from pylearn2.compat.OrderedDict import update [as 別名]
    def get_lr_scalers(self):
        """
        .. todo::

            WRITEME
        """
        rval = OrderedDict()

        params = self.get_params()

        for layer in self.hidden_layers + [self.visible_layer]:
            contrib = layer.get_lr_scalers()

            # No two layers can contend to scale a parameter
            assert not any([key in rval for key in contrib])
            # Don't try to scale anything that's not a parameter
            assert all([key in params for key in contrib])

            rval.update(contrib)
        assert all([isinstance(val, float) for val in rval.values()])

        return rval
開發者ID:HBadertscher,項目名稱:pylearn2,代碼行數:24,代碼來源:dbm.py

示例5: Recurrent

# 需要導入模塊: from pylearn2.compat import OrderedDict [as 別名]
# 或者: from pylearn2.compat.OrderedDict import update [as 別名]
class Recurrent(Layer):
    """
    A recurrent neural network layer using the hyperbolic tangent
    activation function, passing on all hidden states or a selection
    of them to the next layer.

    The hidden state is initialized to zeros.

    Parameters
    ----------
    dim : int
        The number of elements in the hidden layer
    layer_name : str
        The name of the layer. All layers in an MLP must have a unique name.
    irange : float
        Initializes each weight randomly in U(-irange, irange)
    irange : float
        The input-to-hidden weight matrix is initialized with weights in
        the uniform interval (-irange, irange). The hidden-to-hidden
        matrix weights are sampled in the same manner, unless the argument
        svd is set to True (see below).
    indices : slice, list of integers or integer, optional
        If specified this layer will return only the given hidden
        states. If an integer is given, it will not return a
        SequenceSpace. Otherwise, it will return a SequenceSpace of
        fixed length. Note that a SequenceSpace of fixed length
        can be flattened by using the FlattenerLayer.
        Note: For now only [-1] is supported.
    init_bias : float, optional
        Set an initial bias to be added at each time step. Defaults to 0.
    nonlinearity : theano.function, optional
    weight_noise : bool, optional
        Additive Gaussian noise applied to parameters
    """
    def __init__(self, dim, layer_name, irange, indices=None,
                 init_bias=0., nonlinearity=tensor.tanh,
                 weight_noise=False, **kwargs):
        self._std_dev = kwargs.pop('noise_std_dev', .075)
        self.rnn_friendly = True
        self._scan_updates = OrderedDict()
        self.__dict__.update(locals())
        del self.self
        super(Recurrent, self).__init__()
        if not self.weight_noise:
            self._std_dev = None

    @wraps(Layer.set_input_space)
    def set_input_space(self, space):
        if ((not isinstance(space, SequenceSpace) and
                not isinstance(space, SequenceDataSpace)) or
                not isinstance(space.space, VectorSpace)):
            raise ValueError("Recurrent layer needs a SequenceSpace("
                             "VectorSpace) or SequenceDataSpace(VectorSpace)\
                             as input but received  %s instead"
                             % (space))

        self.input_space = space

        if self.indices is not None:
            if len(self.indices) > 1:
                raise ValueError("Only indices = [-1] is supported right now")
                self.output_space = CompositeSpace(
                    [VectorSpace(dim=self.dim) for _
                     in range(len(self.indices))]
                )
            else:
                assert self.indices == [-1], "Only indices = [-1] works now"
                self.output_space = VectorSpace(dim=self.dim)
        else:
            if isinstance(self.input_space, SequenceSpace):
                self.output_space = SequenceSpace(VectorSpace(dim=self.dim))
            elif isinstance(self.input_space, SequenceDataSpace):
                self.output_space =\
                    SequenceDataSpace(VectorSpace(dim=self.dim))

        # Initialize the parameters
        rng = self.mlp.rng
        if self.irange is None:
            raise ValueError("Recurrent layer requires an irange value in "
                             "order to initialize its weight matrices")

        input_dim = self.input_space.dim

        # W is the input-to-hidden matrix
        W = rng.uniform(-self.irange, self.irange, (input_dim, self.dim))

        # U is the hidden-to-hidden transition matrix
        U = rng.randn(self.dim, self.dim)
        U, _ = scipy.linalg.qr(U)

        # b is the bias
        b = np.zeros((self.dim,))

        self._params = [
            sharedX(W, name=(self.layer_name + '_W')),
            sharedX(U, name=(self.layer_name + '_U')),
            sharedX(b + self.init_bias,
                    name=(self.layer_name + '_b'))
        ]

#.........這裏部分代碼省略.........
開發者ID:dwf,項目名稱:pylearn2,代碼行數:103,代碼來源:rnn.py

示例6: __init__

# 需要導入模塊: from pylearn2.compat import OrderedDict [as 別名]
# 或者: from pylearn2.compat.OrderedDict import update [as 別名]
    def __init__(self, objective, params, inputs=None,
                 param_constrainers=None, max_iter=-1,
                 lr_scalers=None, verbose=0, tol=None,
                 init_alpha=None, min_init_alpha=1e-3,
                 reset_alpha=True, conjugate=False,
                 reset_conjugate=True, gradients=None,
                 gradient_updates=None, line_search_mode=None,
                 accumulate=False, theano_function_mode=None):

        self.__dict__.update(locals())
        del self.self

        if line_search_mode is None:
            if init_alpha is None:
                init_alpha = (.001, .005, .01, .05, .1)
        else:
            assert line_search_mode == 'exhaustive'
            if init_alpha is None:
                init_alpha = (.5, 1.)

        self.init_alpha = tuple([float(elem) for elem in init_alpha])

        if inputs is None:
            inputs = []

        if param_constrainers is None:
            param_constrainers = []

        obj = objective

        self.verbose = verbose

        param_to_grad_sym = OrderedDict()
        param_to_grad_shared = OrderedDict()
        updates = OrderedDict()
        if self.gradient_updates is not None:
            updates.update(self.gradient_updates)

        self.params = [param for param in params]

        for param in params:
            if self.gradients is not None and param in self.gradients:
                g = self.gradients[param]
            else:
                g = grad(objective, param)
            param_to_grad_sym[param] = g
            if param.name is not None:
                param_name = param.name
            else:
                param_name = 'anon_param'
            grad_name = 'BatchGradientDescent.grad_' + param_name
            grad_shared = sharedX(param.get_value() * 0., name=grad_name)
            param_to_grad_shared[param] = grad_shared
            updates[grad_shared] = g

        self.param_to_grad_shared = param_to_grad_shared

        if self.verbose:
            logger.info('batch gradient class compiling gradient function')
        t1 = time.time()
        if self.accumulate:
            self._compute_grad = Accumulator(inputs, updates=updates)
        else:
            self._compute_grad = function(
                inputs,
                updates=updates,
                mode=self.theano_function_mode,
                name='BatchGradientDescent._compute_grad')
        if self.verbose:
            t2 = time.time()
            logger.info('done. Took {0}'.format(t2-t1))

        if self.verbose:
            logger.info('batch gradient class compiling objective function')
        if self.accumulate:
            self.obj = Accumulator(inputs, obj)
        else:
            self.obj = function(inputs, obj, mode=self.theano_function_mode,
                                name='BatchGradientDescent.obj')

        if self.verbose:
            logger.info('done')

        self.param_to_cache = OrderedDict()
        alpha = T.scalar(name='alpha')
        alpha.tag.test_value = np.cast[alpha.dtype](.01)
        cache_updates = OrderedDict()
        goto_updates = OrderedDict()
        for param in params:
            if param.name is None:
                param_name = 'anon_param'
            else:
                param_name = param.name
            cache_name = 'BatchGradientDescent.param_to_cache[%s]' % param_name
            self.param_to_cache[param] = sharedX(param.get_value(borrow=False),
                                                 name=cache_name)
            cache_updates[self.param_to_cache[param]] = param
            cached = self.param_to_cache[param]
            g = self.param_to_grad_shared[param]
            if lr_scalers is not None and param in lr_scalers:
#.........這裏部分代碼省略.........
開發者ID:123fengye741,項目名稱:pylearn2,代碼行數:103,代碼來源:batch_gradient_descent.py

示例7: get_lr_scalers

# 需要導入模塊: from pylearn2.compat import OrderedDict [as 別名]
# 或者: from pylearn2.compat.OrderedDict import update [as 別名]
 def get_lr_scalers(self, model_idx=-1):
     scaler = OrderedDict()
     for model in self.models:
         scaler.update(model.get_lr_scalers())
     return scaler
開發者ID:ballasn,項目名稱:facedet,代碼行數:7,代碼來源:cascade.py


注:本文中的pylearn2.compat.OrderedDict.update方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。