當前位置: 首頁>>代碼示例>>Python>>正文


Python OrderedDict.keys方法代碼示例

本文整理匯總了Python中pylearn2.compat.OrderedDict.keys方法的典型用法代碼示例。如果您正苦於以下問題:Python OrderedDict.keys方法的具體用法?Python OrderedDict.keys怎麽用?Python OrderedDict.keys使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pylearn2.compat.OrderedDict的用法示例。


在下文中一共展示了OrderedDict.keys方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from pylearn2.compat import OrderedDict [as 別名]
# 或者: from pylearn2.compat.OrderedDict import keys [as 別名]

#.........這裏部分代碼省略.........
        self._goto_alpha = function(
            [alpha],
            updates=goto_updates,
            mode=self.theano_function_mode,
            name='BatchGradientDescent._goto_alpha')

        norm = T.sqrt(sum([T.sqr(elem).sum() for elem in
                           self.param_to_grad_shared.values()]))
        norm.name = 'BatchGradientDescent.norm'
        normalize_grad_updates = OrderedDict()
        for grad_shared in self.param_to_grad_shared.values():
            normalize_grad_updates[grad_shared] = grad_shared / norm

        # useful for monitoring
        self.ave_grad_size = sharedX(0.)
        self.new_weight = sharedX(1.)
        normalize_grad_updates[self.ave_grad_size] = \
            self.new_weight * norm + (1.-self.new_weight) * self.ave_grad_size

        self._normalize_grad = \
            function([],
                     norm,
                     updates=normalize_grad_updates,
                     mode=self.theano_function_mode,
                     name='BatchGradientDescent._normalize_grad')

        if self.conjugate:
            grad_shared = self.param_to_grad_shared.values()

            grad_to_old_grad = OrderedDict()
            for elem in grad_shared:
                grad_to_old_grad[elem] = \
                    sharedX(elem.get_value(), 'old_'+elem.name)

            self._store_old_grad = \
                function([norm],
                         updates=OrderedDict([(grad_to_old_grad[g_], g_ * norm)
                                             for g_ in grad_to_old_grad]),
                         mode=self.theano_function_mode,
                         name='BatchGradientDescent._store_old_grad')

            grad_ordered = list(grad_to_old_grad.keys())
            old_grad_ordered = [grad_to_old_grad[g_] for g_ in grad_ordered]

            def dot_product(x, y):
                return sum([(x_elem * y_elem).sum()
                           for x_elem, y_elem in safe_zip(x, y)])

            beta_pr = (dot_product(grad_ordered, grad_ordered) - dot_product(grad_ordered, old_grad_ordered)) / \
                (1e-7+dot_product(old_grad_ordered, old_grad_ordered))
            assert beta_pr.ndim == 0

            beta = T.maximum(beta_pr, 0.)

            # beta_pr is the Polak-Ribiere formula for beta.
            # According to wikipedia, the beta to use for NCG is "a matter of
            # heuristics or taste" but max(0, beta_pr) is "a popular choice...
            # which provides direction reset automatically." (ie, it is meant
            # to revert to steepest descent when you have traveled far enough
            # that the objective function is behaving non-quadratically enough
            # that the conjugate gradient formulas aren't working anymore)

            # http://en.wikipedia.org/wiki/Nonlinear_conjugate_gradient_method

            assert grad not in grad_to_old_grad

            make_conjugate_updates = \
                [(g_, g_ + beta * grad_to_old_grad[g_]) for g_ in grad_ordered]

            mode = self.theano_function_mode
            if mode is not None and hasattr(mode, 'record'):
                for v, u in make_conjugate_updates:
                    mode.record.handle_line(
                        'BatchGradientDescent._make_conjugate var '
                        + var_descriptor(v) + '\n')
                    mode.record.handle_line(
                        'BatchGradientDescent._make_conjugate update '
                        + var_descriptor(u) + '\n')

            self._make_conjugate = \
                function([], updates=make_conjugate_updates,
                         mode=self.theano_function_mode,
                         name='BatchGradientDescent._make_conjugate')

            if mode is not None and hasattr(mode, 'record'):
                for output in self._make_conjugate.maker.fgraph.outputs:
                    mode.record.handle_line(
                        'BatchGradientDescent._make_conjugate output '
                        + var_descriptor(output) + '\n')

        if tol is None:
            if objective.dtype == "float32":
                self.tol = 1e-6
            else:
                self.tol = 3e-7
        else:
            self.tol = tol

        self.ave_step_size = sharedX(0.)
        self.ave_grad_mult = sharedX(0.)
開發者ID:123fengye741,項目名稱:pylearn2,代碼行數:104,代碼來源:batch_gradient_descent.py

示例2: Monitor

# 需要導入模塊: from pylearn2.compat import OrderedDict [as 別名]
# 或者: from pylearn2.compat.OrderedDict import keys [as 別名]

#.........這裏部分代碼省略.........
                                    data_specs=self._flat_data_specs,
                                    return_tuple=True,
                                    rng=sd)

            # If self._flat_data_specs is empty, no channel needs data,
            # so we do not need to call the iterator in order to average
            # the monitored values across different batches, we only
            # have to call them once.
            if len(self._flat_data_specs[1]) == 0:
                X = ()
                self.run_prereqs(X, d)
                a(*X)

            else:
                actual_ne = 0
                for X in myiterator:
                    # X is a flat (not nested) tuple
                    self.run_prereqs(X, d)
                    a(*X)
                    actual_ne += self._flat_data_specs[0].np_batch_size(X)
                # end for X
                if actual_ne != ne:
                    raise RuntimeError("At compile time, your iterator said "
                                       "it had %d examples total, but at "
                                       "runtime it gave us %d." %
                                       (ne, actual_ne))
        # end for d

        log.info("Monitoring step:")
        log.info("\tEpochs seen: %d" % self._epochs_seen)
        log.info("\tBatches seen: %d" % self._num_batches_seen)
        log.info("\tExamples seen: %d" % self._examples_seen)
        t = time.time() - self.t0
        for channel_name in sorted(self.channels.keys(),
                                   key=number_aware_alphabetical_key):
            channel = self.channels[channel_name]
            channel.time_record.append(t)
            channel.batch_record.append(self._num_batches_seen)
            channel.example_record.append(self._examples_seen)
            channel.epoch_record.append(self._epochs_seen)
            val = channel.val_shared.get_value()
            channel.val_record.append(val)
            # TODO: use logging infrastructure so that user can configure
            # formatting
            if abs(val) < 1e4:
                val_str = str(val)
            else:
                val_str = '%.3e' % val

            log.info("\t%s: %s" % (channel_name, val_str))

    def run_prereqs(self, data, dataset):
        """
        Runs all "prerequistie functions" on a batch of data. Always
        called right before computing the monitoring channels on that
        batch.

        Parameters
        ----------
        data : tuple or Variable
            a member of the Space used as input to the monitoring
            functions
        dataset : Dataset
            the Dataset the data was drawn from
        """
        if dataset not in self.prereqs:
開發者ID:123fengye741,項目名稱:pylearn2,代碼行數:70,代碼來源:monitor.py


注:本文中的pylearn2.compat.OrderedDict.keys方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。