當前位置: 首頁>>代碼示例>>Python>>正文


Python compat.OrderedDict類代碼示例

本文整理匯總了Python中pylearn2.compat.OrderedDict的典型用法代碼示例。如果您正苦於以下問題:Python OrderedDict類的具體用法?Python OrderedDict怎麽用?Python OrderedDict使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了OrderedDict類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_gradients

    def get_gradients(self, model, data, ** kwargs):
        indiv_results = []
        composite_specs, mapping = self.get_composite_specs_and_mapping(model)
        nested_data = mapping.nest(data)
        for cost, cost_data in safe_zip(self.costs, nested_data):
            result = cost.get_gradients(model, cost_data, ** kwargs)
            indiv_results.append(result)

        grads = OrderedDict()
        updates = OrderedDict()
        params = model.get_params()

        for coeff, packed in zip(self.coeffs, indiv_results):
            g, u = packed
            for param in g:
                if param not in params:
                    raise ValueError("A shared variable (" +
                                     str(param) +
                                     ") that is not a parameter appeared "
                                     "a cost gradient dictionary.")
            for param in g:
                assert param.ndim == g[param].ndim
                v = coeff * g[param]
                if param not in grads:
                    grads[param] = v
                else:
                    grads[param] = grads[param] + v
                assert grads[param].ndim == param.ndim
            assert not any([state in updates for state in u])
            assert not any([state in params for state in u])
            updates.update(u)

        return grads, updates
開發者ID:nitbix,項目名稱:pylearn2,代碼行數:33,代碼來源:cost.py

示例2: get_monitoring_channels

    def get_monitoring_channels(self, model, data, ** kwargs):
        self.get_data_specs(model)[0].validate(data)
        rval = OrderedDict()
        composite_specs, mapping = self.get_composite_specs_and_mapping(model)
        nested_data = mapping.nest(data)

        for i, cost in enumerate(self.costs):
            cost_data = nested_data[i]
            try:
                channels = cost.get_monitoring_channels(model, cost_data,
                                                        **kwargs)
                rval.update(channels)
            except TypeError:
                reraise_as(Exception('SumOfCosts.get_monitoring_channels '
                                     'encountered TypeError while calling {0}'
                                     '.get_monitoring_channels'.format(
                                         type(cost))))

            value = cost.expr(model, cost_data, ** kwargs)
            if value is not None:
                name = ''
                if hasattr(value, 'name') and value.name is not None:
                    name = '_' + value.name
                rval['term_' + str(i) + name] = value

        return rval
開發者ID:nitbix,項目名稱:pylearn2,代碼行數:26,代碼來源:cost.py

示例3: get_gradients

    def get_gradients(self, model, data, **kwargs):
        cost = self._cost(model, data, **kwargs)

        params = list(model.get_params())

        grads = T.grad(cost, params, disconnected_inputs='ignore',
                       consider_constant=[self.sampler.particles])

        gradients = OrderedDict(izip(params, grads))

        updates = OrderedDict()

        sampler_updates = self.sampler.updates()
        updates.update(sampler_updates)
        return gradients, updates
開發者ID:ASAPPinc,項目名稱:pylearn2,代碼行數:15,代碼來源:ebm_estimation.py

示例4: __init__

 def __init__(self, dim, layer_name, irange, indices=None,
              init_bias=0., svd=True, nonlinearity=tensor.tanh):
     self.rnn_friendly = True
     self._scan_updates = OrderedDict()
     self.__dict__.update(locals())
     del self.self
     super(Recurrent, self).__init__()
開發者ID:MarCnu,項目名稱:pylearn2,代碼行數:7,代碼來源:rnn.py

示例5: __init__

 def __init__(self, base_learning_rule, decay=0.9):
     self.base = base_learning_rule
     # hack to allow MomentumAdjustor to access momentum value
     if hasattr(self.base, 'momentum'):
         self.momentum = self.base.momentum
     self.decay = decay
     self.mean_updates = OrderedDict()
開發者ID:Neuroglycerin,項目名稱:neukrill-net-tools,代碼行數:7,代碼來源:update_norm_monitor.py

示例6: __init__

 def __init__(self, dim, layer_name, irange, indices=None,
              init_bias=0., nonlinearity=tensor.tanh,
              weight_noise=False, **kwargs):
     self._std_dev = kwargs.pop('noise_std_dev', .075)
     self.rnn_friendly = True
     self._scan_updates = OrderedDict()
     self.__dict__.update(locals())
     del self.self
     super(Recurrent, self).__init__()
     if not self.weight_noise:
         self._std_dev = None
開發者ID:dwf,項目名稱:pylearn2,代碼行數:11,代碼來源:rnn.py

示例7: get_lr_scalers

    def get_lr_scalers(self):
        """
        .. todo::

            WRITEME
        """
        rval = OrderedDict()

        params = self.get_params()

        for layer in self.hidden_layers + [self.visible_layer]:
            contrib = layer.get_lr_scalers()

            # No two layers can contend to scale a parameter
            assert not any([key in rval for key in contrib])
            # Don't try to scale anything that's not a parameter
            assert all([key in params for key in contrib])

            rval.update(contrib)
        assert all([isinstance(val, float) for val in rval.values()])

        return rval
開發者ID:HBadertscher,項目名稱:pylearn2,代碼行數:22,代碼來源:dbm.py

示例8: __init__

 def __init__(
     self,
     decrease_rate=0.5,
     increase_rate=1.2,
     min_rate=1e-6,
     max_rate=50
 ):
     assert increase_rate > 1.
     assert decrease_rate < 1.
     self.decrease_rate = sharedX(decrease_rate, 'decrease_rate')
     self.increase_rate = sharedX(increase_rate, 'increase_rate')
     self.min_rate = min_rate
     self.max_rate = max_rate
     self.zeros = OrderedDict()
開發者ID:nitbix,項目名稱:pylearn2,代碼行數:14,代碼來源:learning_rule.py

示例9: __init__

    def __init__(self, model):
        self.training_succeeded = False
        self.model = model
        self.channels = OrderedDict()
        self._num_batches_seen = 0
        self._examples_seen = 0
        self._epochs_seen = 0
        self._datasets = []
        self._iteration_mode = []
        self._batch_size = []
        self._num_batches = []
        self._dirty = True
        self._rng_seed = []
        self.names_to_del = ['theano_function_mode']
        self.t0 = time.time()
        self.theano_function_mode = None

        # Initialize self._nested_data_specs, self._data_specs_mapping,
        # and self._flat_data_specs
        self._build_data_specs()
開發者ID:MarCnu,項目名稱:pylearn2,代碼行數:20,代碼來源:monitor.py

示例10: get_lr_scalers

 def get_lr_scalers(self, model_idx=-1):
     scaler = OrderedDict()
     for model in self.models:
         scaler.update(model.get_lr_scalers())
     return scaler
開發者ID:ballasn,項目名稱:facedet,代碼行數:5,代碼來源:cascade.py

示例11: DROP_RPROP

class DROP_RPROP(LearningRule):
    def __init__(
        self,
        decrease_rate=0.5,
        increase_rate=1.2,
        min_rate=1e-6,
        max_rate=50
    ):
        assert increase_rate > 1.
        assert decrease_rate < 1.
        self.decrease_rate = sharedX(decrease_rate, 'decrease_rate')
        self.increase_rate = sharedX(increase_rate, 'increase_rate')
        self.min_rate = min_rate
        self.max_rate = max_rate
        self.zeros = OrderedDict()

    def add_channels_to_monitor(self, monitor, monitoring_dataset):
        monitor.add_channel(
            'rprop_decrease_rate',
            ipt=None,
            val=self.decrease_rate,
            dataset=monitoring_dataset,
            data_specs=(NullSpace(), '')
        )
        monitor.add_channel(
            'rprop_increase_rate',
            ipt=None,
            val=self.increase_rate,
            dataset=monitoring_dataset,
            data_specs=(NullSpace(), '')
        )
        for zero in self.zeros.values():
            monitor.add_channel(
                zero.name,
                ipt=None,
                val=T.sum(zero),
                dataset=monitoring_dataset,
                data_specs=(NullSpace(), '')
            )

    def get_updates(self, learning_rate, grads, lr_scalers=None,
            global_error=None,masks=None):
        updates = OrderedDict()

        for param, grad in grads.iteritems():
            # Create required shared variables
            lr = lr_scalers.get(param, learning_rate.get_value())
            delta = sharedX(
                np.zeros_like(param.get_value()) + lr,
                borrow=True
            )
            previous_grad = sharedX(
                np.zeros_like(param.get_value()),
                borrow=True
            )
            zeros = sharedX(
                np.zeros_like(param.get_value()),
                borrow=True
            )
            

            layer_name = re.sub('_W$','',param.name)
            if re.match(r'.*_W$',param.name) and layer_name in masks:
                    mask = masks[layer_name]
                    masked_grad = T.gt(T.dot(mask.T,T.dot(mask,grad)),0.)
            else:
                masked_grad = 1. #T.ones_like(grad)

            # Name variables according to the parameter name
            if param.name is not None:
                delta.name = 'delta_'+param.name
                zeros.name = 'zeros_' + param.name
                previous_grad.name = 'previous_grad_' + param.name

            self.zeros[param] = zeros
            temp = grad * previous_grad
            delta_inc = T.switch(
                    T.neq(grad,0.),
                    T.clip(
                        T.switch(
                            T.eq(temp, 0.),
                            delta,
                            T.switch(
                                T.lt(temp, 0.),
                                delta*self.decrease_rate,
                                delta*self.increase_rate
                            )
                        ),
                        self.min_rate,
                        self.max_rate
                    ),
                    delta
            )


            previous_grad_inc = T.switch(
                T.gt(masked_grad,0.),
                T.switch(
                    T.gt(temp,0.),
                    grad,
#.........這裏部分代碼省略.........
開發者ID:nitbix,項目名稱:pylearn2,代碼行數:101,代碼來源:learning_rule.py

示例12: RMSProp

class RMSProp(LearningRule):
    """
    Implements the RMSProp learning rule.

    The RMSProp learning rule is described by Hinton in `lecture 6
    <http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf>`
    of the Coursera Neural Networks for Machine Learning course.

    In short, Hinton suggests "[the] magnitude of the gradient can be very
    different for different weights and can change during learning.  This
    makes it hard to choose a global learning rate." RMSProp solves this
    problem by "[dividing] the learning rate for a weight by a running
    average of the magnitudes of recent gradients for that weight."


    Parameters
    ----------
    decay : float, optional
        Decay constant similar to that used in AdaDelta and Momentum methods.
    max_scaling: float, optional
        Restrict the RMSProp gradient scaling coefficient to values
        below `max_scaling`.

    Notes
    -----
    An instance of this LearningRule should only be used with one
    TrainingAlgorithm, and its get_updates method should be called
    only once. This is required in order to make the monitoring
    channels correctly report the moving averages.
    """

    def __init__(self, decay=0.9, max_scaling=1e5):
        assert 0. <= decay < 1.
        assert max_scaling > 0
        self.decay = sharedX(decay, 'decay')
        self.epsilon = 1. / max_scaling
        self.mean_square_grads = OrderedDict()

    @wraps(LearningRule.add_channels_to_monitor)
    def add_channels_to_monitor(self, monitor, monitoring_dataset):
        """
        The channels added are the min, mean, and max of the
        mean_square_grad of each parameter.
        """

        channel_mapping = {
            '_min': T.min,
            '_max': T.max,
            '_mean': T.mean
        }

        for mean_square_grad in self.mean_square_grads.values():
            for suffix, op in channel_mapping.items():
                monitor.add_channel(
                    name=(mean_square_grad.name + suffix),
                    ipt=None,
                    val=op(mean_square_grad),
                    data_specs=(NullSpace(), ''),
                    dataset=monitoring_dataset)
        return

    def get_updates(self, learning_rate, grads, lr_scalers=None):
        """
        Provides the symbolic (theano) description of the updates needed to
        perform this learning rule. See Notes for side-effects.

        Parameters
        ----------
        learning_rate : float
            Learning rate coefficient.
        grads : dict
            A dictionary mapping from the model's parameters to their
            gradients.
        lr_scalers : dict
            A dictionary mapping from the model's parameters to a learning
            rate multiplier.

        Returns
        -------
        updates : OrderdDict
            A dictionary mapping from the old model parameters, to their new
            values after a single iteration of the learning rule.

        Notes
        -----
        This method has the side effect of storing the moving average
        of the square gradient in `self.mean_square_grads`. This is
        necessary in order for the monitoring channels to be able
        to track the value of these moving averages.
        Therefore, this method should only get called once for each
        instance of RMSProp.
        """

        updates = OrderedDict()
        for param in grads:

            # mean_squared_grad := E[g^2]_{t-1}
            mean_square_grad = sharedX(param.get_value() * 0.)

            if param.name is None:
#.........這裏部分代碼省略.........
開發者ID:nitbix,項目名稱:pylearn2,代碼行數:101,代碼來源:learning_rule.py

示例13: Monitor

class Monitor(object):
    """
    A class for monitoring Models while they are being trained.

    A monitor object records the number of minibatches and number of
    examples the model has trained, as well as any number of "channels"
    that track quantities of interest (examples: the objective
    function, measures of hidden unit activity, reconstruction error,
    sum of squared second derivatives, average norm of the weight
    vectors, etc.)

    Parameters
    ----------
    model : `pylearn2.models.model.Model`

    Attributes
    ----------
    on_channel_conflict : string
        `error` : this is a behavior when there is conlfict
            on creating a channel twice
        `copy_history` : this is a behavior when creating a
            new channel and transfering history of old_monitor
        `overwrite` : this is a behavior when creating a
            new channel without taking an account of old_monitor
    """

    def __init__(self, model):
        self.training_succeeded = False
        self.model = model
        self.channels = OrderedDict()
        self._num_batches_seen = 0
        self._examples_seen = 0
        self._epochs_seen = 0
        self._datasets = []
        self._iteration_mode = []
        self._batch_size = []
        self._num_batches = []
        self._dirty = True
        self._rng_seed = []
        self.names_to_del = ['theano_function_mode']
        self.t0 = time.time()
        self.theano_function_mode = None
        self.on_channel_conflict = 'error'

        # Initialize self._nested_data_specs, self._data_specs_mapping,
        # and self._flat_data_specs
        self._build_data_specs()

    def _build_data_specs(self):
        """
        Computes a nested data_specs for input and all channels

        Also computes the mapping to flatten it. This function is
        called from redo_theano.
        """
        # Ask the model what it needs
        m_space, m_source = self.model.get_monitoring_data_specs()
        input_spaces = [m_space]
        input_sources = [m_source]
        for channel in self.channels.values():
            space = channel.data_specs[0]
            assert isinstance(space, Space)
            input_spaces.append(space)
            input_sources.append(channel.data_specs[1])

        nested_space = CompositeSpace(input_spaces)
        nested_source = tuple(input_sources)

        self._nested_data_specs = (nested_space, nested_source)
        self._data_specs_mapping = DataSpecsMapping(self._nested_data_specs)

        flat_space = self._data_specs_mapping.flatten(nested_space,
                                                      return_tuple=True)
        flat_source = self._data_specs_mapping.flatten(nested_source,
                                                       return_tuple=True)
        self._flat_data_specs = (CompositeSpace(flat_space), flat_source)

    def set_theano_function_mode(self, mode):
        """
        .. todo::

            WRITEME

        Parameters
        ----------
        mode : theano.compile.Mode
            Theano functions for the monitoring channels will be
            compiled and run using this mode.
        """
        if self.theano_function_mode != mode:
            self._dirty = True
            self.theano_function_mode = mode

    def add_dataset(self, dataset, mode='sequential', batch_size=None,
                    num_batches=None, seed=None):
        """
        Determines the data used to calculate the values of each channel.

        Parameters
        ----------
#.........這裏部分代碼省略.........
開發者ID:123fengye741,項目名稱:pylearn2,代碼行數:101,代碼來源:monitor.py

示例14: Recurrent

class Recurrent(Layer):
    """
    A recurrent neural network layer using the hyperbolic tangent
    activation function, passing on all hidden states or a selection
    of them to the next layer.

    The hidden state is initialized to zeros.

    Parameters
    ----------
    dim : int
        The number of elements in the hidden layer
    layer_name : str
        The name of the layer. All layers in an MLP must have a unique name.
    irange : float
        Initializes each weight randomly in U(-irange, irange)
    irange : float
        The input-to-hidden weight matrix is initialized with weights in
        the uniform interval (-irange, irange). The hidden-to-hidden
        matrix weights are sampled in the same manner, unless the argument
        svd is set to True (see below).
    indices : slice, list of integers or integer, optional
        If specified this layer will return only the given hidden
        states. If an integer is given, it will not return a
        SequenceSpace. Otherwise, it will return a SequenceSpace of
        fixed length. Note that a SequenceSpace of fixed length
        can be flattened by using the FlattenerLayer.
        Note: For now only [-1] is supported.
    init_bias : float, optional
        Set an initial bias to be added at each time step. Defaults to 0.
    nonlinearity : theano.function, optional
    weight_noise : bool, optional
        Additive Gaussian noise applied to parameters
    """
    def __init__(self, dim, layer_name, irange, indices=None,
                 init_bias=0., nonlinearity=tensor.tanh,
                 weight_noise=False, **kwargs):
        self._std_dev = kwargs.pop('noise_std_dev', .075)
        self.rnn_friendly = True
        self._scan_updates = OrderedDict()
        self.__dict__.update(locals())
        del self.self
        super(Recurrent, self).__init__()
        if not self.weight_noise:
            self._std_dev = None

    @wraps(Layer.set_input_space)
    def set_input_space(self, space):
        if ((not isinstance(space, SequenceSpace) and
                not isinstance(space, SequenceDataSpace)) or
                not isinstance(space.space, VectorSpace)):
            raise ValueError("Recurrent layer needs a SequenceSpace("
                             "VectorSpace) or SequenceDataSpace(VectorSpace)\
                             as input but received  %s instead"
                             % (space))

        self.input_space = space

        if self.indices is not None:
            if len(self.indices) > 1:
                raise ValueError("Only indices = [-1] is supported right now")
                self.output_space = CompositeSpace(
                    [VectorSpace(dim=self.dim) for _
                     in range(len(self.indices))]
                )
            else:
                assert self.indices == [-1], "Only indices = [-1] works now"
                self.output_space = VectorSpace(dim=self.dim)
        else:
            if isinstance(self.input_space, SequenceSpace):
                self.output_space = SequenceSpace(VectorSpace(dim=self.dim))
            elif isinstance(self.input_space, SequenceDataSpace):
                self.output_space =\
                    SequenceDataSpace(VectorSpace(dim=self.dim))

        # Initialize the parameters
        rng = self.mlp.rng
        if self.irange is None:
            raise ValueError("Recurrent layer requires an irange value in "
                             "order to initialize its weight matrices")

        input_dim = self.input_space.dim

        # W is the input-to-hidden matrix
        W = rng.uniform(-self.irange, self.irange, (input_dim, self.dim))

        # U is the hidden-to-hidden transition matrix
        U = rng.randn(self.dim, self.dim)
        U, _ = scipy.linalg.qr(U)

        # b is the bias
        b = np.zeros((self.dim,))

        self._params = [
            sharedX(W, name=(self.layer_name + '_W')),
            sharedX(U, name=(self.layer_name + '_U')),
            sharedX(b + self.init_bias,
                    name=(self.layer_name + '_b'))
        ]

#.........這裏部分代碼省略.........
開發者ID:dwf,項目名稱:pylearn2,代碼行數:101,代碼來源:rnn.py

示例15: __init__

    def __init__(self, objective, params, inputs=None,
                 param_constrainers=None, max_iter=-1,
                 lr_scalers=None, verbose=0, tol=None,
                 init_alpha=None, min_init_alpha=1e-3,
                 reset_alpha=True, conjugate=False,
                 reset_conjugate=True, gradients=None,
                 gradient_updates=None, line_search_mode=None,
                 accumulate=False, theano_function_mode=None):

        self.__dict__.update(locals())
        del self.self

        if line_search_mode is None:
            if init_alpha is None:
                init_alpha = (.001, .005, .01, .05, .1)
        else:
            assert line_search_mode == 'exhaustive'
            if init_alpha is None:
                init_alpha = (.5, 1.)

        self.init_alpha = tuple([float(elem) for elem in init_alpha])

        if inputs is None:
            inputs = []

        if param_constrainers is None:
            param_constrainers = []

        obj = objective

        self.verbose = verbose

        param_to_grad_sym = OrderedDict()
        param_to_grad_shared = OrderedDict()
        updates = OrderedDict()
        if self.gradient_updates is not None:
            updates.update(self.gradient_updates)

        self.params = [param for param in params]

        for param in params:
            if self.gradients is not None and param in self.gradients:
                g = self.gradients[param]
            else:
                g = grad(objective, param)
            param_to_grad_sym[param] = g
            if param.name is not None:
                param_name = param.name
            else:
                param_name = 'anon_param'
            grad_name = 'BatchGradientDescent.grad_' + param_name
            grad_shared = sharedX(param.get_value() * 0., name=grad_name)
            param_to_grad_shared[param] = grad_shared
            updates[grad_shared] = g

        self.param_to_grad_shared = param_to_grad_shared

        if self.verbose:
            logger.info('batch gradient class compiling gradient function')
        t1 = time.time()
        if self.accumulate:
            self._compute_grad = Accumulator(inputs, updates=updates)
        else:
            self._compute_grad = function(
                inputs,
                updates=updates,
                mode=self.theano_function_mode,
                name='BatchGradientDescent._compute_grad')
        if self.verbose:
            t2 = time.time()
            logger.info('done. Took {0}'.format(t2-t1))

        if self.verbose:
            logger.info('batch gradient class compiling objective function')
        if self.accumulate:
            self.obj = Accumulator(inputs, obj)
        else:
            self.obj = function(inputs, obj, mode=self.theano_function_mode,
                                name='BatchGradientDescent.obj')

        if self.verbose:
            logger.info('done')

        self.param_to_cache = OrderedDict()
        alpha = T.scalar(name='alpha')
        alpha.tag.test_value = np.cast[alpha.dtype](.01)
        cache_updates = OrderedDict()
        goto_updates = OrderedDict()
        for param in params:
            if param.name is None:
                param_name = 'anon_param'
            else:
                param_name = param.name
            cache_name = 'BatchGradientDescent.param_to_cache[%s]' % param_name
            self.param_to_cache[param] = sharedX(param.get_value(borrow=False),
                                                 name=cache_name)
            cache_updates[self.param_to_cache[param]] = param
            cached = self.param_to_cache[param]
            g = self.param_to_grad_shared[param]
            if lr_scalers is not None and param in lr_scalers:
#.........這裏部分代碼省略.........
開發者ID:123fengye741,項目名稱:pylearn2,代碼行數:101,代碼來源:batch_gradient_descent.py


注:本文中的pylearn2.compat.OrderedDict類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。