本文整理匯總了Python中pybrain.supervised.trainers.RPropMinusTrainer.trainUntilConvergence方法的典型用法代碼示例。如果您正苦於以下問題:Python RPropMinusTrainer.trainUntilConvergence方法的具體用法?Python RPropMinusTrainer.trainUntilConvergence怎麽用?Python RPropMinusTrainer.trainUntilConvergence使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pybrain.supervised.trainers.RPropMinusTrainer
的用法示例。
在下文中一共展示了RPropMinusTrainer.trainUntilConvergence方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: exam
# 需要導入模塊: from pybrain.supervised.trainers import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.trainers.RPropMinusTrainer import trainUntilConvergence [as 別名]
def exam(self, dc, train_com, train_path):
"""
Here you can train your networks.
Parameters
----------
:param dc: dict
Dict of commands with values.
:param train_com:
Command what you want teach by ann to recognize.
:param train_path:
Path to folder with train examples.
Returns
-------
:return:
File with network.
"""
num_hid = 1
put, out = [], []
ds = SupervisedDataSet(420, 1)
nt = buildNetwork(420, 3, 1, bias=True, hiddenclass=SigmoidLayer, outclass=SigmoidLayer)
for way in train_path:
for i in os.listdir(way):
lk = self.link(i)
if lk:
self.logger.debug(u'File was added to training list %s' % i)
result = self.ext_t(way+i)
ds.addSample(result, (dc[lk],))
put.append(result)
out.append([dc[lk]])
net = nl.net.newff([[np.min(put), np.max(put)]]*420, [num_hid, 1], [nl.trans.LogSig(), nl.trans.SatLinPrm()])
net.trainf = nl.train.train_rprop
trainer = RPropMinusTrainer(nt, dataset=ds, verbose=False)
self.logger.info(u'Training brain...')
trainer.trainUntilConvergence(maxEpochs=100, verbose=False, continueEpochs=100, validationProportion=1e-7)
self.logger.info(u'Training neural...')
error = net.train(put, out, epochs=500, show=500, goal=1e-4, lr=1e-10)
while error[-1] > 1e-3:
self.logger.info(u'Try to one more training, because MSE are little not enough!')
net = nl.net.newff([[np.min(put), np.max(put)]]*420, [num_hid, 1], [nl.trans.LogSig(), nl.trans.SatLinPrm()])
net.trainf = nl.train.train_rprop
self.logger.info(u'Training neural...')
error = net.train(put, out, epochs=500, show=500, goal=1e-4, lr=1e-10)
num_hid += 1
try:
net.save(u'networks/%s_neurolab' % train_com)
fl = open(u'networks/%s_brain' % train_com, 'w')
pickle.dump(nt, fl)
fl.close()
except IOError:
os.mkdir(u'networks')
net.save(u'networks/%s_neurolab' % train_com)
示例2: trainNetwork
# 需要導入模塊: from pybrain.supervised.trainers import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.trainers.RPropMinusTrainer import trainUntilConvergence [as 別名]
def trainNetwork(net, sample_list, validate_list, net_filename, max_epochs=5500, min_epochs=300):
count_input_samples = len(sample_list)
count_outputs = len(validate_list)
ds = SupervisedDataSet(count_input_samples, count_outputs)
ds.addSample(sample_list, validate_list)
trainer = RPropMinusTrainer(net, verbose=True)
trainer.setData(ds)
trainer.trainUntilConvergence(maxEpochs=max_epochs, continueEpochs=min_epochs)
NetworkWriter.writeToFile(net, net_filename)
return net
示例3: fit
# 需要導入模塊: from pybrain.supervised.trainers import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.trainers.RPropMinusTrainer import trainUntilConvergence [as 別名]
def fit(self, X, y):
"""
Trains the classifier
:param pandas.DataFrame X: data shape [n_samples, n_features]
:param y: labels of events - array-like of shape [n_samples]
.. note::
doesn't support sample weights
"""
dataset = self._prepare_net_and_dataset(X, y, 'classification')
if self.use_rprop:
trainer = RPropMinusTrainer(self.net,
etaminus=self.etaminus,
etaplus=self.etaplus,
deltamin=self.deltamin,
deltamax=self.deltamax,
delta0=self.delta0,
dataset=dataset,
learningrate=self.learningrate,
lrdecay=self.lrdecay,
momentum=self.momentum,
verbose=self.verbose,
batchlearning=self.batchlearning,
weightdecay=self.weightdecay)
else:
trainer = BackpropTrainer(self.net,
dataset,
learningrate=self.learningrate,
lrdecay=self.lrdecay,
momentum=self.momentum,
verbose=self.verbose,
batchlearning=self.batchlearning,
weightdecay=self.weightdecay)
if self.epochs < 0:
trainer.trainUntilConvergence(maxEpochs=self.max_epochs,
continueEpochs=self.continue_epochs,
verbose=self.verbose,
validationProportion=self.validation_proportion)
else:
for i in range(self.epochs):
trainer.train()
self.__fitted = True
return self
示例4: partial_fit
# 需要導入模塊: from pybrain.supervised.trainers import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.trainers.RPropMinusTrainer import trainUntilConvergence [as 別名]
def partial_fit(self, X, y):
"""
Additional training of the estimator
:param pandas.DataFrame X: data shape [n_samples, n_features]
:param y: labels of events - array-like of shape [n_samples]
:return: self
"""
dataset = self._prepare_dataset(X, y, self._model_type)
if not self.is_fitted():
self._prepare_net(dataset=dataset, model_type=self._model_type)
if self.use_rprop:
trainer = RPropMinusTrainer(self.net,
etaminus=self.etaminus,
etaplus=self.etaplus,
deltamin=self.deltamin,
deltamax=self.deltamax,
delta0=self.delta0,
dataset=dataset,
learningrate=self.learningrate,
lrdecay=self.lrdecay,
momentum=self.momentum,
verbose=self.verbose,
batchlearning=self.batchlearning,
weightdecay=self.weightdecay)
else:
trainer = BackpropTrainer(self.net,
dataset,
learningrate=self.learningrate,
lrdecay=self.lrdecay,
momentum=self.momentum,
verbose=self.verbose,
batchlearning=self.batchlearning,
weightdecay=self.weightdecay)
if self.epochs < 0:
trainer.trainUntilConvergence(maxEpochs=self.max_epochs,
continueEpochs=self.continue_epochs,
verbose=self.verbose,
validationProportion=self.validation_proportion)
else:
trainer.trainEpochs(epochs=self.epochs, )
return self
示例5: createAndTrainNetworkFromList
# 需要導入模塊: from pybrain.supervised.trainers import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.trainers.RPropMinusTrainer import trainUntilConvergence [as 別名]
def createAndTrainNetworkFromList(train_list, count_input_samples, net_filename, count_layers=33,
count_outputs=1, max_epochs=15000, min_epochs=300):
net = buildNetwork(count_input_samples, count_layers, count_outputs)
ds = SupervisedDataSet(count_input_samples, count_outputs)
count_samples = len(train_list)
for i in range(0, count_samples):
ds.addSample(train_list[i][:-count_outputs], train_list[i][-count_outputs])
trainer = RPropMinusTrainer(net, verbose=True)
trainer.setData(ds)
a = trainer.trainUntilConvergence(maxEpochs=max_epochs, continueEpochs=min_epochs, validationProportion=0.15)
net_filename = net_filename[:-4]+str(a[0][-1])+'.xml'
NetworkWriter.writeToFile(net, net_filename)
result_list = [a, net_filename]
return result_list
示例6: createAndTrainNetworkFromFile
# 需要導入模塊: from pybrain.supervised.trainers import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.trainers.RPropMinusTrainer import trainUntilConvergence [as 別名]
def createAndTrainNetworkFromFile(curs_filename, count_input_samples, count_samples, net_filename, count_layers=33,
count_outputs=1, max_epochs=15000, min_epochs=300):
net = buildNetwork(count_input_samples, count_layers, count_outputs)
ds = SupervisedDataSet(count_input_samples, count_outputs)
wb = load_workbook(filename=curs_filename)
ws = wb.active
for i in range(0, count_samples):
loaded_data = []
for j in range(0, count_input_samples + 1):
loaded_data.append(round(float(ws.cell(row=i+1, column=j+1).value), 4))
#ds.addSample(loaded_data[:-1], loaded_data[-1])
#print loaded_data[:-1], loaded_data[-1]
ds.addSample(loaded_data[:-1], loaded_data[-1])
trainer = RPropMinusTrainer(net, verbose=True)
trainer.setData(ds)
a = trainer.trainUntilConvergence(maxEpochs=max_epochs, continueEpochs=min_epochs, validationProportion=0.15)
net_filename = net_filename[:-4]+str(a[0][-1])+'.xml'
NetworkWriter.writeToFile(net, net_filename)
result_list = [a, net_filename]
return result_list
示例7: train
# 需要導入模塊: from pybrain.supervised.trainers import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.trainers.RPropMinusTrainer import trainUntilConvergence [as 別名]
def train(self, input_row, output_row):
"""
Training network by r-prop.
PARTITION_OF_EDUCATION_VERIFICATION_SET - education|validation ratio
MAX_EPOCHS - count of max steps of education
OUTCASTING_EPOCHS - if education can't get out of local minimum it given count of steps, it stops
"""
self._form_set(input_row, output_row)
trainer = RPropMinusTrainer(module=self.network, dataset=self.data_set)
self.training_errors, self.validation_errors = trainer.trainUntilConvergence(
validationProportion=self.settings.training_part_fraction,
maxEpochs=self.settings.maximum_training_epochs,
continueEpochs=self.settings.quit_epochs)
len_validate = int(len(output_row[0]['data']) * (1 - self.settings.training_part_fraction))
results_of = [list(self.network.activate(x))[0] for x in self.inputs_for_validation[len_validate:]]
self.mse = sum(map(lambda result, target: fabs(result - target), list(results_of),
list(output_row[0]['data'][len_validate:]))) / len(results_of)
print 'DUMB-dd'
for it in results_of:
print it
print 'DUMB-pp'
for it in list(output_row[0]['data'][len_validate:]):
print it
print '| | |-MSE = ', self.mse
示例8: normalize
# 需要導入模塊: from pybrain.supervised.trainers import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.trainers.RPropMinusTrainer import trainUntilConvergence [as 別名]
window[9] = normalize(window[9], max_volume, min_volume)
output = n.activate(window)
for j in range(0, 5):
prediction = denormalize(output[j], max_price, min_price)
print prediction, ticks_future[j][0]
writer.writerow([ticks_future[j][2], prediction, ticks_future[j][0]])
last_five = []
for day in range(0, 100):
ticks = map(lambda x: data.next(), range(0, 5))
last_five = map(lambda x: data.next(), range(0, 5))
DS.appendLinked(*ticks_to_inputs_outputs(ticks, last_five))
with open('predictions.csv', 'wb') as output_file:
writer = csv.writer(output_file, delimiter=',', quotechar='\"', quoting=csv.QUOTE_MINIMAL)
for i in range(0, 18):
trainer.trainUntilConvergence(validationProportion=0.55, maxEpochs=1000, verbose=False)
ticks = map(lambda x: data.next(), range(0, 5))
predict_next_five(last_five, ticks, writer)
DS.appendLinked(*ticks_to_inputs_outputs(last_five, ticks))
last_five = ticks
示例9: FFNetwork
# 需要導入模塊: from pybrain.supervised.trainers import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.trainers.RPropMinusTrainer import trainUntilConvergence [as 別名]
class FFNetwork(Network):
def __init__(self, sensor_ids, action_ids, n_hidden, bias=True):
super(FFNetwork, self).__init__(sensor_ids=sensor_ids, action_ids=action_ids)
self.net = buildNetwork(SensorModel.array_length(sensor_ids), n_hidden, 1,
hiddenclass=TanhLayer,
#outclass=TanhLayer,
bias=bias)
self.scaler_input = None
self.trainer = None
def save(self, filename):
with open(filename, 'wb') as f:
pickle.dump(self, f)
def load(self, filename):
with open(filename, 'rb') as f:
ffn = pickle.load(f)
self.net = ffn.net
self.sensor_ids = ffn.sensor_ids
self.action_ids = ffn.action_ids
self.scaler_input = ffn.scaler_input
del ffn
def get_action(self, sensors):
x = sensors.get_array(self.sensor_ids)
if self.scaler_input is not None:
x = self.scaler_input.transform(x)
return self.net.activate(x)[0]
def get_params(self):
pass
def train(self, training_files, learningrate=0.01, scaling=True, noise=False, verbose=True):
print "building dataset..."
ds = SupervisedDataSet(SensorModel.array_length(self.sensor_ids), 1)
# read training file line, create sensormodel object, do backprop
a = None
s = None
for logfile in training_files:
print "loading file", logfile
with open(logfile) as f:
for line in f:
if line.startswith("Received:"):
s = SensorModel(string=line.split(' ', 1)[1])
elif line.startswith("Sending:"):
a = Actions.from_string(string=line.split(' ', 1)[1])
if s is not None and a is not None:
ds.addSample(inp=s.get_array(self.sensor_ids), target=a[self.action_ids[0]])
if noise:
# add the same training sample again but with noise in the sensors
s.add_noise()
ds.addSample(inp=s.get_array(self.sensor_ids), target=a[self.action_ids[0]])
s = None
a = None
print "dataset size:", len(ds)
if scaling:
print "scaling dataset"
self.scaler_input = StandardScaler(with_mean=True, with_std=False).fit(ds.data['input'])
ds.data['input'] = self.scaler_input.transform(ds.data['input'])
ds.data['target'] = ds.data['target']
#self.trainer = BackpropTrainer(self.net, learningrate=learningrate, verbose=verbose)
self.trainer = RPropMinusTrainer(self.net, verbose=verbose, batchlearning=True)
print "training network..."
self.trainer.trainUntilConvergence(dataset=ds, validationProportion=0.25, maxEpochs=10, continueEpochs=2)
示例10: RPropMinusTrainer
# 需要導入模塊: from pybrain.supervised.trainers import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.trainers.RPropMinusTrainer import trainUntilConvergence [as 別名]
inputs[1] = window_volumes[0]
inputs[3] = window_volumes[1]
inputs[5] = window_volumes[2]
inputs[7] = window_volumes[3]
inputs[9] = window_volumes[4]
DS.appendLinked(inputs, forecast)
day += 1
# training
trainer = RPropMinusTrainer(n, verbose=True, batchlearning=True, learningrate=0.01, lrdecay=0.0, momentum=0.0,
weightdecay=0.0)
trainer.setData(DS)
trainer.trainUntilConvergence(validationProportion=0.25, maxEpochs=100)
# validating
valid_data = days('btceUSD.days.csv')
for i in range(0, 105):
valid_data.next()
window = []
max_price = 0.0
min_price = float('inf')
max_volume = 0.0
min_volume = float('inf')
print "Test window: "
示例11: ClassificationDataSet
# 需要導入模塊: from pybrain.supervised.trainers import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.trainers.RPropMinusTrainer import trainUntilConvergence [as 別名]
#1-N output encoding , N=10
trndata = ClassificationDataSet(np.shape(train)[1], 10, nb_classes=10)
for i in xrange(np.shape(train)[0]):
trndata.addSample(train[i], traint[i])
validata = ClassificationDataSet(np.shape(valid)[1], 10, nb_classes=10)
for i in xrange(np.shape(valid)[0]):
trndata.addSample(valid[i], validt[i])
testdata = ClassificationDataSet(np.shape(test)[1], 10, nb_classes=10)
for i in xrange(np.shape(test)[0]):
testdata.addSample(test[i], testt[i])
#Build the network
if nlayers > 1:
net = buildNetwork(trndata.indim, nhidden, nhiddeno, trndata.outdim, outclass=SoftmaxLayer )
else:
net = buildNetwork(trndata.indim, nhidden, trndata.outdim, outclass=SoftmaxLayer )
#construct the trainer object
#We can also train Bprop using pybrain using the same argumets as below: trainer = BackpropTrainer(...)
trainer = RPropMinusTrainer(net, dataset=trndata, momentum=0.9, verbose=True, weightdecay=0.01, learningrate=0.1)
#train and test
trainer.trainUntilConvergence(maxEpochs=percent_dataset_usage*300)#,trainingData=trndata,validationData = validata)
trainer.testOnData(verbose=True, dataset=testdata)
print_NN_params() #remind us what architecture was tested
print_time_elapsed(start) #print training time
filename = 'instances/NN_' +str(percent_dataset_usage) +'perc_'+ str(nhidden) + '_' +str(nhiddeno) +'.save'
save_NN_instance(filename) #save trained object to disk