當前位置: 首頁>>代碼示例>>Python>>正文


Python RPropMinusTrainer.train方法代碼示例

本文整理匯總了Python中pybrain.supervised.trainers.RPropMinusTrainer.train方法的典型用法代碼示例。如果您正苦於以下問題:Python RPropMinusTrainer.train方法的具體用法?Python RPropMinusTrainer.train怎麽用?Python RPropMinusTrainer.train使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pybrain.supervised.trainers.RPropMinusTrainer的用法示例。


在下文中一共展示了RPropMinusTrainer.train方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: train

# 需要導入模塊: from pybrain.supervised.trainers import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.trainers.RPropMinusTrainer import train [as 別名]
def train(
    train,
    label,
    custom_net=None,
    training_mse_threshold=0.40,
    testing_mse_threshold=0.60,
    epoch_threshold=10,
    epochs=100,
    hidden_size=20,
):
    # Test Set.
    x_train = train[0:split_at, :]
    y_train_slice = label.__getslice__(0, split_at)
    y_train = y_train_slice.reshape(-1, 1)
    x_test = train[split_at:, :]
    y_test_slice = label.__getslice__(split_at, label.shape[0])
    y_test = y_test_slice.reshape(-1, 1)

    # Shape.
    input_size = x_train.shape[1]
    target_size = y_train.shape[1]

    # prepare dataset
    ds = SDS(input_size, target_size)
    ds.setField("input", x_train)
    ds.setField("target", y_train)

    # prepare dataset
    ds_test = SDS(input_size, target_size)
    ds_test.setField("input", x_test)
    ds_test.setField("target", y_test)

    min_mse = 1000000

    # init and train
    if custom_net == None:
        net = buildNetwork(input_size, hidden_size, target_size, bias=True)
    else:
        print "Picking up the custom network"
        net = custom_net

    trainer = RPropMinusTrainer(net, dataset=ds, verbose=False, weightdecay=0.01, batchlearning=True)
    print "training for {} epochs...".format(epochs)

    for i in range(epochs):
        mse = trainer.train()
        print "training mse, epoch {}: {}".format(i + 1, math.sqrt(mse))

        p = net.activateOnDataset(ds_test)
        mse = math.sqrt(MSE(y_test, p))
        print "-- testing mse, epoch {}: {}".format(i + 1, mse)
        pickle.dump(net, open("current_run", "wb"))

        if min_mse > mse:
            print "Current minimum found at ", i
            pickle.dump(net, open("current_min_epoch_" + model_file, "wb"))
            min_mse = mse

    pickle.dump(net, open(model_file, "wb"))
    return net
開發者ID:korkam,項目名稱:beta_learning-matlab-through-case-studies,代碼行數:62,代碼來源:PyBrainWithCV.py

示例2: fit

# 需要導入模塊: from pybrain.supervised.trainers import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.trainers.RPropMinusTrainer import train [as 別名]
    def fit(self, X, y):
        """
        Trains the classifier

        :param pandas.DataFrame X: data shape [n_samples, n_features]
        :param y: labels of events - array-like of shape [n_samples]
        .. note::
            doesn't support sample weights
        """

        dataset = self._prepare_net_and_dataset(X, y, 'classification')

        if self.use_rprop:
            trainer = RPropMinusTrainer(self.net,
                                        etaminus=self.etaminus,
                                        etaplus=self.etaplus,
                                        deltamin=self.deltamin,
                                        deltamax=self.deltamax,
                                        delta0=self.delta0,
                                        dataset=dataset,
                                        learningrate=self.learningrate,
                                        lrdecay=self.lrdecay,
                                        momentum=self.momentum,
                                        verbose=self.verbose,
                                        batchlearning=self.batchlearning,
                                        weightdecay=self.weightdecay)
        else:
            trainer = BackpropTrainer(self.net,
                                      dataset,
                                      learningrate=self.learningrate,
                                      lrdecay=self.lrdecay,
                                      momentum=self.momentum,
                                      verbose=self.verbose,
                                      batchlearning=self.batchlearning,
                                      weightdecay=self.weightdecay)

        if self.epochs < 0:
            trainer.trainUntilConvergence(maxEpochs=self.max_epochs,
                                          continueEpochs=self.continue_epochs,
                                          verbose=self.verbose,
                                          validationProportion=self.validation_proportion)
        else:
            for i in range(self.epochs):
                trainer.train()
        self.__fitted = True

        return self
開發者ID:tyamana,項目名稱:rep,代碼行數:49,代碼來源:pybrain.py

示例3: train

# 需要導入模塊: from pybrain.supervised.trainers import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.trainers.RPropMinusTrainer import train [as 別名]
    def train(self, trndata, valdata, hidden_neurons=5, hidden_class=SigmoidLayer, iterations=3):
        print "Hidden neurons: " + str(hidden_neurons)
        print "Hidden class: " + str(hidden_class)
        print "Iterations: " + str(iterations)

        fnn = buildNetwork(trndata.indim, hidden_neurons, trndata.outdim, outclass=SoftmaxLayer,
                           hiddenclass=hidden_class)
        trainer = RPropMinusTrainer(fnn, dataset=trndata, verbose=False)
        #trainer = BackpropTrainer(fnn, dataset=trndata, momentum=0.5, verbose=True, learningrate=0.05)

        for i in range(iterations):
            trainer.train()
            out, tar = trainer.testOnClassData(dataset=valdata, return_targets=True, verbose=False)
            #used to return final score, not used yet :D
            print str(i) + " " + str(accuracy(out, tar))

        self.model = trainer
開發者ID:sacherus,項目名稱:pca-image,代碼行數:19,代碼來源:forest_main.py

示例4: train_net

# 需要導入模塊: from pybrain.supervised.trainers import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.trainers.RPropMinusTrainer import train [as 別名]
def train_net():
    fnn = buildNetwork(len(input_args), 3, 2)
    ds = ClassificationDataSet(len(input_args),2,nb_classes=2)

    ds = generate_data(ds , hour_to_use_app = 10)
    
    trainer = RPropMinusTrainer( fnn, dataset= ds, verbose=True)

    trainer.train()
    trainer.trainEpochs(15)
    
    test = ClassificationDataSet(4,2)
    test.addSample((12,6,10,6),[1,0])
    test.addSample((12,1,7,2),[0,1])
    test.addSample((12,3,11,1),[0,1])
    
    fnn.activateOnDataset(test)
    
    return fnn,trainer,ds,test
開發者ID:tweksteen,項目名稱:neuralsession,代碼行數:21,代碼來源:svmlearning.py

示例5: train

# 需要導入模塊: from pybrain.supervised.trainers import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.trainers.RPropMinusTrainer import train [as 別名]
    def train(self,
              cycles,
              percent,
              hidden_layers=3,
              hiddenclass=None,
              num_outputs=1,
              num_inputs=-1):
        num_inputs = self._count_inputs() if num_inputs == -1 else num_inputs
        if num_inputs <= 0 or num_outputs <= 0 or cycles <= 0 or (percent > 100 or percent <= 0):
            return

        network = self._buildNet(hidden_layers, num_outputs, num_inputs, hiddenclass)
        data_set = self.get_data_set(percent, num_inputs, num_outputs)

        trainer = RPropMinusTrainer(network, dataset=data_set)

        for i in range(cycles):
            trainer.train()

        return network
開發者ID:ArsEmchik,項目名稱:course_project,代碼行數:22,代碼來源:resilient_propagation.py

示例6: Brain

# 需要導入模塊: from pybrain.supervised.trainers import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.trainers.RPropMinusTrainer import train [as 別名]
class Brain():
    def __init__(self): 
        self.inputs = 3
        self.outputs = 1
        self.n = buildNetwork(self.inputs, 200,200,200,200,self.outputs, bias=True,hiddenclass=TanhLayer)
        self.n.sortModules()
        self.ds = SupervisedDataSet(self.inputs, self.outputs)
        self.trainer = RPropMinusTrainer(self.n)
        self.trainer.setData(self.ds)
    def wipedataset(self):
        self.ds = SupervisedDataSet(self.inputs, self.outputs)
        pass
    def cycle(self,action,state):
        return self.n.activate([action,state[0],state[1]])
    def AddToTrainingSet(self,action,state,output):
        out= "New Set","Action: ",action,"State: ", state,"Output: ", output
        f.write(str(out)+"\n")
        self.ds.addSample((action,state[0],state[1]),output)
    def train(self):
        return "ERROR",self.trainer.train()
    def traintoconverg(self):
        x = 10000
        y=0
        z=100
        print len(self.ds),"DS SIZE"
        while x > 0.0001 and y < z:
            print len(self.ds)
            x = self.trainer.train()
            print x,"ERROR",y
            y+=1
        f = open('brains/brain2000.ann','w')
        pickle.dump(self.n,f)
    def trainfinal(self):
        x = 10000
        y=0
        z=25
        while x > 0.00001 and y < z:
            x = self.trainer.train()
            print x,"ERROR",y
            y+=1
開發者ID:akeenan22,項目名稱:NeuroSoccer,代碼行數:42,代碼來源:Brain.py

示例7: trainNetwork

# 需要導入模塊: from pybrain.supervised.trainers import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.trainers.RPropMinusTrainer import train [as 別名]
def trainNetwork(dirname):
    numFeatures = 5000
    ds = SequentialDataSet(numFeatures, 1)
    
    tracks = glob.glob(os.path.join(dirname, 'train??.wav'))
    for t in tracks:
        track = os.path.splitext(t)[0]
        # load training data
        print "Reading %s..." % track
        data = numpy.genfromtxt(track + '_seg.csv', delimiter=",")
        labels = numpy.genfromtxt(track + 'REF.txt', delimiter='\t')[0::10,1]
        numData = data.shape[0]

        # add the input to the dataset
        print "Adding to dataset..."
        ds.newSequence()
        for i in range(numData):
            ds.addSample(data[i], (labels[i],))
    
    # initialize the neural network
    print "Initializing neural network..."
    net = buildNetwork(numFeatures, 50, 1,
                       hiddenclass=LSTMLayer, outputbias=False, recurrent=True)
    
    # train the network on the dataset
    print "Training neural net"
    trainer = RPropMinusTrainer(net, dataset=ds)
##    trainer.trainUntilConvergence(maxEpochs=50, verbose=True, validationProportion=0.1)
    error = -1
    for i in range(100):
        new_error = trainer.train()
        print "error: " + str(new_error)
        if abs(error - new_error) < 0.1: break
        error = new_error

    # save the network
    print "Saving neural network..."
    NetworkWriter.writeToFile(net, os.path.basename(dirname) + 'net')
開發者ID:tediris,項目名稱:MusicML,代碼行數:40,代碼來源:trainer.py

示例8: len

# 需要導入模塊: from pybrain.supervised.trainers import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.trainers.RPropMinusTrainer import train [as 別名]
tstClassErrorPath='20LSTMCell/tst_ClassAccu'
networkPath='20LSTMCell/TrainUntilConv.xml'
figPath='20LSTMCell/ErrorGraph'
 
#####################
#####################
print "Training Data Length: ", len(trndata)
print "Num of Training Seq: ", trndata.getNumSequences()
print "Validation Data Length: ", len(tstdata)
print "Num of Validation Seq: ", tstdata.getNumSequences()
                    
print 'Start Training'
time_start = time.time()
while (tstErrorCount<100):
    print "********** Classification with 20LSTMCell with RP- **********"   
    trnError=trainer.train()
    tstError = trainer.testOnData(dataset=tstdata)
    trnAccu = 100-percentError(trainer.testOnClassData(), trndata['class'])
    tstAccu = 100-percentError(trainer.testOnClassData(dataset=tstdata), tstdata['class'])
    trn_class_accu.append(trnAccu)
    tst_class_accu.append(tstAccu)
    trn_error.append(trnError)
    tst_error.append(tstError)
                                                                                                                                              
    np.savetxt(trnErrorPath, trn_error)
    np.savetxt(tstErrorPath, tst_error)
    np.savetxt(trnClassErrorPath, trn_class_accu)
    np.savetxt(tstClassErrorPath, tst_class_accu)
                                                                                                                                            
    if(oldtstError==0):
        oldtstError = tstError
開發者ID:dnth,項目名稱:long-behavior,代碼行數:33,代碼來源:lstm-classifier.py

示例9: load_snd

# 需要導入模塊: from pybrain.supervised.trainers import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.trainers.RPropMinusTrainer import train [as 別名]
snd_20043 = load_snd(20043)
append2DS(DS, snd_20043, 2, nClasses)

# fnn = buildNetwork(1, 15, 5, hiddenclass = LSTMLayer, outclass = SoftmaxLayer, outputbias = False, recurrent = True)

fnn = buildNetwork(1, 1, nClasses, hiddenclass=LSTMLayer, outclass=TanhLayer, outputbias=False, recurrent=True)

# Create a trainer for backprop and train the net.
# trainer = BackpropTrainer(fnn, DStrain, learningrate = 0.005)

trainer = RPropMinusTrainer(fnn, dataset=DS, verbose=True)

for i in range(4):
    # train the network for 1 epoch
    trainer.trainEpochs(1)
    print trainer.train()

fnn.reset()
summed = numpy.zeros(nClasses)
for sample in snd_18768:
    summed += fnn.activate([sample])
print summed / len(snd_18768)

fnn.reset()
summed = numpy.zeros(nClasses)
for sample in snd_21649:
    summed += fnn.activate([sample])
print summed / len(snd_21649)

fnn.reset()
summed = numpy.zeros(nClasses)
開發者ID:alleveenstra,項目名稱:paithon,代碼行數:33,代碼來源:classify.py

示例10: SupervisedDataSet

# 需要導入模塊: from pybrain.supervised.trainers import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.trainers.RPropMinusTrainer import train [as 別名]
                print column, "not an int or long"         
    return np.array(nr[:-1]), nr[-1]

data = cursor.execute("select %s from adult_data" % columns).fetchall()

dataset = SupervisedDataSet(8, 1)
for row in data:
    xd, yd = createNPRow(row)       
    dataset.addSample(xd, yd)

nn = buildNetwork(8, 3, 1)
trainer = RPropMinusTrainer(nn)
trainer.setData(dataset)

for x in range(5):
    error = trainer.train()
    print error
  
errors, success = 0,0
for row in cursor.execute("select %s from adult_test" % columns).fetchall():    
    xd, yd = createNPRow(row)    
    check = int(round(nn.activate(xd[:8])[0]))
    if check > 1: check = 1
    prediction = possibilities['relation_to_50k_plus'][check]
    actual = possibilities['relation_to_50k_plus'][yd]
    if prediction == actual:
        match = "match"
        success += 1
    else:
        match = "no match"
        errors += 1
開發者ID:richwandell,項目名稱:python_machine_learning,代碼行數:33,代碼來源:neural_network.py

示例11: trainNetwork

# 需要導入模塊: from pybrain.supervised.trainers import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.trainers.RPropMinusTrainer import train [as 別名]
def trainNetwork(dirname):

    numFeatures = 2000

    ds = SequentialDataSet(numFeatures, 1)

    tracks = glob.glob(os.path.join(dirname, "*.csv"))
    for t in tracks:
        track = os.path.splitext(t)[0]
        # load training data
        print "Reading %s..." % t
        data = numpy.genfromtxt(t, delimiter=",")
        numData = data.shape[0]

        # add the input to the dataset
        print "Adding to dataset..."
        ds.newSequence()
        for i in range(numData):
            # ds.addSample(data[i], (labels[i],))
            input = data[i]
            label = input[numFeatures]
            if label > 0:
                label = midi_util.frequencyToMidi(label)
            ds.addSample(input[0:numFeatures], (label,))

    # initialize the neural network
    print "Initializing neural network..."
    # net = buildNetwork(numFeatures, 50, 1,
    #                   hiddenclass=LSTMLayer, bias=True, recurrent=True)

    # manual network building
    net = RecurrentNetwork()
    inlayer = LinearLayer(numFeatures)
    # h1 = LSTMLayer(70)
    # h2 = SigmoidLayer(50)
    octaveLayer = LSTMLayer(5)
    noteLayer = LSTMLayer(12)
    combinedLayer = SigmoidLayer(60)
    outlayer = LinearLayer(1)

    net.addInputModule(inlayer)
    net.addOutputModule(outlayer)
    # net.addModule(h1)
    # net.addModule(h2)
    net.addModule(octaveLayer)
    net.addModule(noteLayer)
    net.addModule(combinedLayer)

    # net.addConnection(FullConnection(inlayer, h1))
    # net.addConnection(FullConnection(h1, h2))
    # net.addConnection(FullConnection(h2, outlayer))

    net.addConnection(FullConnection(inlayer, octaveLayer))
    net.addConnection(FullConnection(inlayer, noteLayer))
    # net.addConnection(FullConnection(octaveLayer,combinedLayer))
    for i in range(5):
        net.addConnection(
            FullConnection(
                octaveLayer, combinedLayer, inSliceFrom=i, inSliceTo=i + 1, outSliceFrom=i * 12, outSliceTo=(i + 1) * 12
            )
        )
    net.addConnection(FullConnection(noteLayer, combinedLayer))
    net.addConnection(FullConnection(combinedLayer, outlayer))

    net.sortModules()

    # train the network on the dataset
    print "Training neural net"
    trainer = RPropMinusTrainer(net, dataset=ds)
    ##    trainer.trainUntilConvergence(maxEpochs=50, verbose=True, validationProportion=0.1)
    error = -1
    for i in range(150):
        new_error = trainer.train()
        print "error: " + str(new_error)
        if abs(error - new_error) < 0.005:
            break
        error = new_error

    # save the network
    print "Saving neural network..."
    NetworkWriter.writeToFile(net, os.path.basename(dirname) + "designnet")
開發者ID:tediris,項目名稱:MusicML,代碼行數:83,代碼來源:trainer2.py

示例12: buildNetwork

# 需要導入模塊: from pybrain.supervised.trainers import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.trainers.RPropMinusTrainer import train [as 別名]
	elif a == 1:
		testset.append((a,random.uniform(-math.pi,0),1))
		testset.append((a,random.uniform(0,math.pi),-1))
	else:
		testset.append((a,random.uniform(0,math.pi),1))
		testset.append((a,random.uniform(-math.pi,0),-1))


ann = buildNetwork(2,20,1,bias=True,hiddenclass=TanhLayer)
ds = SupervisedDataSet(2,1)
ann.sortModules()
trainer = RPropMinusTrainer(ann)
trainer.setData(ds)
for i in dataset:
	ds.addSample((i[0],i[1]),i[2])

i=10000
x=0
z=100
while i > 0.0001 and x<z:
	i = trainer.train()
	print i
	x+=1

for a in testset:
	result = ann.activate([a[0],a[1]])
	print str(a[2]) +" actual vs. output " +str(result)



開發者ID:akeenan22,項目名稱:NeuroSoccer,代碼行數:29,代碼來源:datasettest.py

示例13: f

# 需要導入模塊: from pybrain.supervised.trainers import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.trainers.RPropMinusTrainer import train [as 別名]
    arg = (i/n)*6 - 3
    x.append(arg)
    r = f(arg) + (random() - 0.5) * 0.2
    y.append(f(arg))
    y_noise.append(r)
    ds.addSample((arg), (r))

trainer_big = BackpropTrainer(net_big, ds, learningrate=0.01, lrdecay=1.0, momentum=0.0, weightdecay=0.0)

          #  RProp-, cf. [Igel&Huesken, Neurocomputing 50, 2003
trainer = RPropMinusTrainer(net, dataset=ds)

# trainer.trainUntilConvergence()

for i in range(100):
     trainer.train()

for i in range(10):
    trainer_big.train()

for i in range(n):
    arg = (i/n)*6 - 3
    y_n.append(net.activate([arg]))
    y_n_big.append(net_big.activate([arg]))



fig = plt.figure()
plt.plot(x, y, 'black')
plt.plot(x, y_noise, 'r')
plt.plot(x, y_n, 'b')
開發者ID:rotanov,項目名稱:way-station,代碼行數:33,代碼來源:nn.py

示例14: len

# 需要導入模塊: from pybrain.supervised.trainers import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.trainers.RPropMinusTrainer import train [as 別名]
            eta=(total*epochCount/epochs)-total
            tm=eta
            tm=int(tm/1000)
            s=str(tm%60).rjust(2,'0')
            tm=int(tm/60)
            m=str(tm%60).rjust(2,'0')
            tm=int(tm/60)
            h=str(tm%24).rjust(2,'0')
            tm=int(tm/24)
            d=str(tm).rjust(3,'0')
            cap="   ETA: %sd%sh%sm%ss" % (d,h,m,s)
            text=font.render(cap,True,(255,255,255))
            visual.blit(text,(4,44))
        
        n.reset()  # reset to t0 for training sequence
        emse=trainer.train()

        if rendering:
            xOff=4+11*23
            eRect=pygame.Rect(xOff,44,11*17,20)
            pygame.draw.rect(visual,(96,96,96),eRect)
            frac=str(emse).split('.')
            if len(frac)<2:
                frac.append('')
            (w,f)=frac
            w=w.rjust(3,'0')
            f=f.ljust(11,'0')
            cap="e=%s.%s" % (w,f)
            text=font.render(cap,True,(255,255,255))
            visual.blit(text,(xOff,44))
            pygame.display.flip()
開發者ID:gau-veldt,項目名稱:LSTM_OOPS,代碼行數:33,代碼來源:lstm_test_bitwise.py

示例15: range

# 需要導入模塊: from pybrain.supervised.trainers import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.trainers.RPropMinusTrainer import train [as 別名]
     visual.blit(text,(4,44))
 
 n.reset()
 prevCh=EOL
 prevGuess=0.0
 se=0
 n.reset()  # reset to t0 for training sequence
 for i in range(len(target)):
     curCh=ord(target[i])
     tgtTicker[i]=chr(curCh)
     inpTicker[i]=chr(max(1,prevCh))
     ds.clear()
     # scales bytes to range [0,1]
     ds.addSample((prevCh/255.0),(curCh/255.0,))
     #ds.addSample((prevCh/255.0,prevGuess),(curCh/255.0,))
     err=trainer.train()
     prevGuess=n['out'].outputbuffer[0][0]
     outVh=min(255.0,max(0.0,255.0*prevGuess))
     outCh=int(round(outVh))
     outVh=outVh-outCh
     if 32>outCh or 127<outCh:
         outCh=1.0
     outTicker[i]=chr(int(outCh))
     outVTicker[i]=round(20.0*outVh)
     se+=(255.0*err)**2
     prevCh=curCh
 mse=math.sqrt(se)
 smse+=mse**2
 
 if rendering:
     frac=str(mse).split('.')
開發者ID:gau-veldt,項目名稱:LSTM_OOPS,代碼行數:33,代碼來源:lstm_test.py


注:本文中的pybrain.supervised.trainers.RPropMinusTrainer.train方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。