當前位置: 首頁>>代碼示例>>Python>>正文


Python RPropMinusTrainer.trainEpochs方法代碼示例

本文整理匯總了Python中pybrain.supervised.trainers.RPropMinusTrainer.trainEpochs方法的典型用法代碼示例。如果您正苦於以下問題:Python RPropMinusTrainer.trainEpochs方法的具體用法?Python RPropMinusTrainer.trainEpochs怎麽用?Python RPropMinusTrainer.trainEpochs使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pybrain.supervised.trainers.RPropMinusTrainer的用法示例。


在下文中一共展示了RPropMinusTrainer.trainEpochs方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: partial_fit

# 需要導入模塊: from pybrain.supervised.trainers import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.trainers.RPropMinusTrainer import trainEpochs [as 別名]
    def partial_fit(self, X, y):
        """
        Additional training of the estimator

        :param pandas.DataFrame X: data shape [n_samples, n_features]
        :param y: labels of events - array-like of shape [n_samples]

        :return: self
        """
        dataset = self._prepare_dataset(X, y, self._model_type)

        if not self.is_fitted():
            self._prepare_net(dataset=dataset, model_type=self._model_type)

        if self.use_rprop:
            trainer = RPropMinusTrainer(self.net,
                                        etaminus=self.etaminus,
                                        etaplus=self.etaplus,
                                        deltamin=self.deltamin,
                                        deltamax=self.deltamax,
                                        delta0=self.delta0,
                                        dataset=dataset,
                                        learningrate=self.learningrate,
                                        lrdecay=self.lrdecay,
                                        momentum=self.momentum,
                                        verbose=self.verbose,
                                        batchlearning=self.batchlearning,
                                        weightdecay=self.weightdecay)
        else:
            trainer = BackpropTrainer(self.net,
                                      dataset,
                                      learningrate=self.learningrate,
                                      lrdecay=self.lrdecay,
                                      momentum=self.momentum,
                                      verbose=self.verbose,
                                      batchlearning=self.batchlearning,
                                      weightdecay=self.weightdecay)

        if self.epochs < 0:
            trainer.trainUntilConvergence(maxEpochs=self.max_epochs,
                                          continueEpochs=self.continue_epochs,
                                          verbose=self.verbose,
                                          validationProportion=self.validation_proportion)
        else:
            trainer.trainEpochs(epochs=self.epochs, )
        return self
開發者ID:AlexanderTek,項目名稱:rep,代碼行數:48,代碼來源:pybrain.py

示例2: train_net

# 需要導入模塊: from pybrain.supervised.trainers import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.trainers.RPropMinusTrainer import trainEpochs [as 別名]
def train_net():
    fnn = buildNetwork(len(input_args), 3, 2)
    ds = ClassificationDataSet(len(input_args),2,nb_classes=2)

    ds = generate_data(ds , hour_to_use_app = 10)
    
    trainer = RPropMinusTrainer( fnn, dataset= ds, verbose=True)

    trainer.train()
    trainer.trainEpochs(15)
    
    test = ClassificationDataSet(4,2)
    test.addSample((12,6,10,6),[1,0])
    test.addSample((12,1,7,2),[0,1])
    test.addSample((12,3,11,1),[0,1])
    
    fnn.activateOnDataset(test)
    
    return fnn,trainer,ds,test
開發者ID:tweksteen,項目名稱:neuralsession,代碼行數:21,代碼來源:svmlearning.py

示例3: generate_data

# 需要導入模塊: from pybrain.supervised.trainers import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.trainers.RPropMinusTrainer import trainEpochs [as 別名]
training_dataset._convertToOneOfMany( bounds=[0,1] )

# same for the independent test data set
testing_dataset = generate_data(test=True)
testing_dataset._convertToOneOfMany( bounds=[0,1] )

# build a feed-forward network with 20 hidden units, plus 
# a corresponding trainer
# fnn = buildNetwork( training_dataset.indim, 15,15, training_dataset.outdim, outclass=SoftmaxLayer )
fnn = buildNetwork( training_dataset.indim, 15, training_dataset.outdim, hiddenclass=LSTMLayer, outclass=SoftmaxLayer, outputbias=False, recurrent=True)
trainer = RPropMinusTrainer( fnn, dataset=training_dataset, verbose=True )
#trainer = BackpropTrainer( fnn, dataset=training_dataset,verbose=True)

for i in range(500):
    # train the network for 1 epoch
    trainer.trainEpochs( 15 )
    
    # evaluate the result on the training and test data
    trnresult = percentError( trainer.testOnClassData(), 
                              training_dataset['class'] )
    tstresult = percentError( trainer.testOnClassData( 
           dataset=testing_dataset ), testing_dataset['class'] )

    # print the result
    print "epoch: %4d" % trainer.totalepochs, \
          "  train error: %5.2f%%" % trnresult, \
          "  test error: %5.2f%%" % tstresult
    if tstresult <= 0.5 :
         print 'Bingo !!!!!!!!!!!!!!!!!!!!!!'
         break
開發者ID:mfbx9da4,項目名稱:neuron-astrocyte-networks,代碼行數:32,代碼來源:googlebraintestRNN.py

示例4: load_snd

# 需要導入模塊: from pybrain.supervised.trainers import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.trainers.RPropMinusTrainer import trainEpochs [as 別名]
# clock
snd_20043 = load_snd(20043)
append2DS(DS, snd_20043, 2, nClasses)

# fnn = buildNetwork(1, 15, 5, hiddenclass = LSTMLayer, outclass = SoftmaxLayer, outputbias = False, recurrent = True)

fnn = buildNetwork(1, 1, nClasses, hiddenclass=LSTMLayer, outclass=TanhLayer, outputbias=False, recurrent=True)

# Create a trainer for backprop and train the net.
# trainer = BackpropTrainer(fnn, DStrain, learningrate = 0.005)

trainer = RPropMinusTrainer(fnn, dataset=DS, verbose=True)

for i in range(4):
    # train the network for 1 epoch
    trainer.trainEpochs(1)
    print trainer.train()

fnn.reset()
summed = numpy.zeros(nClasses)
for sample in snd_18768:
    summed += fnn.activate([sample])
print summed / len(snd_18768)

fnn.reset()
summed = numpy.zeros(nClasses)
for sample in snd_21649:
    summed += fnn.activate([sample])
print summed / len(snd_21649)

fnn.reset()
開發者ID:alleveenstra,項目名稱:paithon,代碼行數:33,代碼來源:classify.py

示例5: train

# 需要導入模塊: from pybrain.supervised.trainers import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.trainers.RPropMinusTrainer import trainEpochs [as 別名]
 def train(self, epoch):
     self.ds._convertToOneOfMany( )
     trainer = RPropMinusTrainer(self.net, dataset=self.ds, momentum=0.1, verbose=True, weightdecay=0.01)
     trainer.trainEpochs( epoch )
開發者ID:Daiver,項目名稱:carplate,代碼行數:6,代碼來源:PyBrainANN.py

示例6: BnTNN

# 需要導入模塊: from pybrain.supervised.trainers import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.trainers.RPropMinusTrainer import trainEpochs [as 別名]
def BnTNN(ds, hiddensize, epoches):
    net = buildNetwork(ds.indim, hiddensize, ds.outdim, outclass=SoftmaxLayer)
    st = time()
    trainer = RPropMinusTrainer(net, dataset=ds, momentum=0.1, verbose=True, weightdecay=0.01)#
    trainer.trainEpochs( epoches )
    return net
開發者ID:Daiver,項目名稱:scripts,代碼行數:8,代碼來源:TrainNN_cv2.py

示例7: RPropMinusTrainer

# 需要導入模塊: from pybrain.supervised.trainers import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.trainers.RPropMinusTrainer import trainEpochs [as 別名]
        nHidden,
        segments,
        hiddenclass=LSTMLayer,
        outclass=TanhLayer,
        outputbias=True,
        recurrent=True,
        peepholes=False,
        fast=False,
    )

trainer = RPropMinusTrainer(fnn, dataset=DS, verbose=True)

print "Begin training..."

# Train the network
trainer.trainEpochs(nEpoch)

# Store the encoder
file = open("autoencoder-%i.xml" % (nHidden), "w")
pickle.dump(fnn, file)
file.close()

# Show an example
id = 86464
cochleogram = data.load_cochleogram(id)
fnn.reset()
haha = numpy.zeros(cochleogram.shape, dtype=numpy.float32)
for i in range(cochleogram.shape[1]):
    output = fnn.activate(cochleogram[:, i].T.tolist()[0])
    haha[:, i] = output
開發者ID:alleveenstra,項目名稱:paithon,代碼行數:32,代碼來源:auto-encode.py

示例8: train_network

# 需要導入模塊: from pybrain.supervised.trainers import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.trainers.RPropMinusTrainer import trainEpochs [as 別名]
def train_network(options_file_location,training_data_location,output_location):
    training_file_handle = open(training_data_location,"r")
    training_reader = csv.reader(training_file_handle)
   
    stdout_file = output_location+'training_console_output.txt'
    stderr_file = output_location+'training_console_errput.txt'
    
    sys.stdout = open(stdout_file,"w")
    sys.stderr = open(stderr_file,"w")

    
    options_file_location = options_file_location
    options_file_handle = open(options_file_location,'r')
    options_dictionary = {}
    
    for option in options_file_handle.readlines():
        key,val = option.split('=')
        print key
        print val
        options_dictionary[key] = val;

    num_predictors = int(options_dictionary['num_predictors'])
    num_outputs = int(options_dictionary['num_outputs'])
    num_training_epochs = int(options_dictionary['num_training_epochs'])
    num_hidden_neurons = int(options_dictionary['num_hidden_neurons'])
    num_classes = int((options_dictionary['num_classes']))
    hidden_neuron_type_str = options_dictionary['hidden_neuron_type']
    output_neuron_type_str = options_dictionary['output_neuron_type']
    
    hidden_layer_type,output_layer_type = net_topol.get_layer_types(options_dictionary)
    
    training_dataset = SequenceClassificationDataSet(num_predictors, 1,num_classes)

    previous_sequence_number = 1
    
    #read data into dataset objects
    print 'reading in training data...'
    for row in training_reader:
        #convert list of strings to list of floats
        list = [float(s) for s in row]
        
        #split input line
        predictors = list[0:num_predictors]
        
        #+1 is to skip over the sequence column
        outputs = list[num_predictors+1:num_predictors+1+num_outputs]
        
        #convert from python list to numpy array
        predictors = np.array(predictors)
        outputs = np.array(outputs)
        
        
        sequence_number = math.trunc(list[num_predictors])
        
        if not sequence_number==previous_sequence_number:
            # print sequence_number
            # print previous_sequence_number
            training_dataset.newSequence()
        
        previous_sequence_number = sequence_number
        
        #add to dataset
        training_dataset.appendLinked(predictors, outputs)

    
    
    network = shortcuts.buildNetwork(num_predictors, num_hidden_neurons, num_outputs, hiddenclass=LSTMLayer, outclass=SoftmaxLayer)
    network.sortModules();
    
    training_dataset._convertToOneOfMany();
    
    print str(network)
    print str(training_dataset)
    
    trainer = RPropMinusTrainer(module=network, dataset=training_dataset)

    for i in range(num_training_epochs):
        print 'Starting training epoch: '+str(i)
        trainer.trainEpochs(1)
        sys.stdout.flush()
    
    network_file_location = output_location+'trained_network.xml'
    NetworkWriter.writeToFile(network, network_file_location)
    
    done_file_handle = open(output_location+'training_done.txt',"w")
    done_file_handle.write('%s' % 'done!')
    done_file_handle.close()
開發者ID:normally-distributed,項目名稱:pybrain,代碼行數:89,代碼來源:monohiddenlayer_classification_LSTM.py

示例9: open

# 需要導入模塊: from pybrain.supervised.trainers import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.trainers.RPropMinusTrainer import trainEpochs [as 別名]
    f = open('___learned3', 'r')
    net = pickle.load(f)
    f.close()
    print 'loaded from file', time() - st
except:
'''
#exit()
if True:
    st = time()
    trainer = RPropMinusTrainer(net, dataset=ds, momentum=0.1, verbose=True, weightdecay=0.01)#
    #trainer = BackpropTrainer( net, dataset=ds, momentum=0.1, verbose=True, weightdecay=0.01)    

    #trainer.trainOnDataset(ds, 10)
    #trainer.testOnData()
    print 'start train'
    trainer.trainEpochs( 100 )
    #trainer.trainUntilConvergence()
    print 'Learning time:', time() - st
    f = open('___learned3', 'w')
    pickle.dump(net, f)
    f.close()

#print net.activate(FeaturesFromFile('pos/5.jpg'))
counter = 0

st = time()
for i in xrange(40000, 50000):
    image = cv.LoadImage(posnames[i], cv.CV_LOAD_IMAGE_GRAYSCALE)
    res = net.activate(FeaturesFromImg(image, size)).argmax()
    #print i, 'pos', res
    if res == 1:
開發者ID:Daiver,項目名稱:scripts,代碼行數:33,代碼來源:TrainNN.py

示例10: sequence_classifier

# 需要導入模塊: from pybrain.supervised.trainers import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.trainers.RPropMinusTrainer import trainEpochs [as 別名]
class sequence_classifier():
  num_time_steps = 5
  def __init__(self, ds): 

    num_inputs = ds.num_features * sequence_classifier.num_time_steps
    self.alldata = SequenceClassificationDataSet(num_inputs, 
                                                 target = 1,
                                                 nb_classes   = ds.get_num_classes(),
                                                 class_labels = ds.get_classes() )

    for Idx in range(len(ds.all_moves)):
      if not (Idx + sequence_classifier.num_time_steps < len(ds.all_moves)):
        continue
   
      class_first = ds.all_moves[Idx].class_ 
      features  = []
      for i in range(sequence_classifier.num_time_steps):
        features = features + ds.all_moves[Idx + i].get_features()

      class_last = ds.all_moves[Idx + sequence_classifier.num_time_steps].class_
  
      if class_first == class_last:
        self.alldata.appendLinked(features, [ds.get_classes().index(ds.all_moves[Idx].class_)])
        self.alldata.newSequence()
      

    self.tstdata, self.trndata = self.alldata.splitWithProportion(0.25)
    self.trndata._convertToOneOfMany()
    self.tstdata._convertToOneOfMany()

    self.seq_rnn      = None #buildNetwork(num_inputs, 2, self.trndata.outdim, hiddenclass=LSTMLayer,recurrent=True ,outclass=SoftmaxLayer)
    self.create_network(num_inputs)

    self.trainer  = RPropMinusTrainer(module=self.seq_rnn, dataset=self.trndata)

  def create_network(self, num_inputs):

    self.seq_rnn = RecurrentNetwork()

    in_layer        = LinearLayer(num_inputs)
    hidden_LSTM_   = LSTMLayer(24)
    hidden_layer_0  = LinearLayer(12)
    hidden_layer_1  = SigmoidLayer(12)
    output_layer    = LinearLayer(self.trndata.outdim)

    self.seq_rnn.addInputModule(in_layer)
    self.seq_rnn.addModule(hidden_layer_0)
    self.seq_rnn.addModule(hidden_layer_1)
    self.seq_rnn.addOutputModule(output_layer)
  
    #Now add the connections:
    in_to_LTSM = FullConnection(in_layer      , hidden_LSTM)
    LTSM_to_h0 = FullConnection(hidden_LSTM, hidden_layer_0)

    in_to_h0   = FullConnection(in_layer      , hidden_layer_0)
    h0_to_h1   = FullConnection(hidden_layer_0, hidden_layer_1)
    h1_to_out  = FullConnection(hidden_layer_1, output_layer)

    self.seq_rnn.addConnection(in_to_LSTM)
    self.seq_rnn.addConnection(LSTM_to_h0)

    self.seq_rnn.addConnection(in_to_h0)
    self.seq_rnn.addConnection(h0_to_h1)
    self.seq_rnn.addConnection(h1_to_out)

    self.seq_rnn.sortModules()

  def start_training(self):
    f = open("./results/seq_rnn_perf.txt", "w");
    for i in range(200):
      print "training step: " , i
      self.trainer.trainEpochs(1)
      err = self.evaluate()
      f.write(str(err) + ",")
      f.flush()
    f.close()

  def evaluate(self):
    print "epoch:" , self.trainer.totalepochs
    correct = 0
    wrong = 0
    self.seq_rnn.sortModules()
    for Idx in range (len(self.tstdata)):
      out = self.seq_rnn.activate(self.tstdata['input'][Idx])
      if argmax(out) == argmax(self.tstdata['target'][Idx]) : 
        correct += 1
      else:
        wrong += 1 

    correct_ratio = correct*1.0/(wrong + correct)    
    self.correct_perc.append(correct_ratio)

    print "Wrong Predictions: "  , wrong ,   "Ratio = ", wrong*100.0/(wrong+correct) , "%"
    print "Correct Predictions: ", correct,  "Ratio = ", correct*100.0/(wrong+correct) , "%"
    if (self.max_ratio < correct_ratio): 
      print "Found new max, saving network"
      self.write_out("best_perfrming_")
      self.max_ratio = correct_ratio

    return 1 - correct_ratio
#.........這裏部分代碼省略.........
開發者ID:SameerAsal,項目名稱:accelerometer_training,代碼行數:103,代碼來源:sequence_classifier.py

示例11: work

# 需要導入模塊: from pybrain.supervised.trainers import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.trainers.RPropMinusTrainer import trainEpochs [as 別名]
    def work(self, image):
        width = self.pt2[0] - self.pt1[0]
        height = self.pt2[1] - self.pt1[1]
        currentrect = (self.pt1[0], self.pt1[1], width, height)#self.currentrect
        #print currentrect
        image_size = cv.GetSize(image)

        # create grayscale version
        grayscale = cv.CreateImage(image_size, 8, 1)
        cv.CvtColor(image, grayscale, cv.CV_BGR2GRAY)
        
        storage = cv.CreateMemStorage(0)
        cv.EqualizeHist(grayscale, grayscale)

        frame = np.asarray(image[:, :])
        
        frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        mask = np.zeros_like(frame_gray)
        mask[self.pt1[1]:self.pt2[1], self.pt1[0]:self.pt2[0]] = 255

        st = time.time()
        tracks = self.detector.detect(frame_gray, mask)
        print 'detect time', time.time() - st
            
        
        cv.Rectangle (image, self.pt1, self.pt2, (0, 255, 0), 1)
        
        cv.SetImageROI(image, currentrect)
        
        st = time.time()
        
        out = self.ClassifyWindow(grayscale, currentrect)
        print out, '|time', time.time() - st

        cv.ResetImageROI(image)        

        if out == 1:
            cv.Rectangle (image, (currentrect[0], currentrect[1]), (currentrect[2] + currentrect[0], currentrect[3] + currentrect[1]), (0, 255, 255), 5)

            self.pt1, self.pt2 = PatchBoundary(tracks, self.pt1, self.pt2)
            tmp = self.ImageFromRect(grayscale, currentrect)
            features = FeaturesFromImg(grayscale, self.ninsize)
            self.additionslds.addSample(features, [1])
            for i in xrange(2):
                badwin = self.ImageFromRect(grayscale, RandomRect(currentrect))
                features = FeaturesFromImg(badwin, self.ninsize)
                self.additionslds.addSample(features, [0])
            print 'len of new dataset', len(self.additionslds)
        '''
        else:
            rect = self.SearchObject(grayscale, currentrect)
            if rect:
                self.pt1, self.pt2 = RectToPoints(rect)
        '''

        if self.stage > 0:
            tmp = self.ImageFromRect(grayscale, currentrect)
            features = FeaturesFromImg(grayscale, self.ninsize)
            self.additionslds.addSample(features, [1])
            for i in xrange(2):
                badwin = self.ImageFromRect(grayscale, RandomRect(currentrect))
                features = FeaturesFromImg(badwin, self.ninsize)
                self.additionslds.addSample(features, [0])
            print 'len of new dataset', len(self.additionslds)

        if len(self.additionslds) > 20:
            
            self.additionslds._convertToOneOfMany( )
            self.additionslds.outdim = self.net.outdim
            
            #net = buildNetwork(self.ninsize[0] * self.ninsize[1], 96, self.additionslds.outdim, outclass=SoftmaxLayer)
            trainer = RPropMinusTrainer(
                self.net, dataset=self.additionslds,
                momentum=0.1, verbose=True, weightdecay=0.01)
            '''trainer = BackpropTrainer(
                self.net, dataset=self.additionslds,
                momentum=0.1, verbose=True, weightdecay=0.01)'''
            trainer.trainEpochs( 3 )
            self.additionslds.clear()
            self.numoflearning += 1
        
        if self.key == 113:            
            cv.SaveImage('img.bmp', image)
            self.key = 255

        if self.key == 119:            
            self.stage = 1
            self.key = 255

        if self.stage == 1 and self.numoflearning > 2:
            self.stage = 2

        '''   
        for item in tracks:
            cv.Circle(image, (item[-1][0], item[-1][1]), 2, (0, 255, 0), -1)
        '''
        
        return image
開發者ID:Daiver,項目名稱:scripts,代碼行數:100,代碼來源:learninig_tracker.py


注:本文中的pybrain.supervised.trainers.RPropMinusTrainer.trainEpochs方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。