本文整理匯總了Python中pandas.core.frame.DataFrame.from_items方法的典型用法代碼示例。如果您正苦於以下問題:Python DataFrame.from_items方法的具體用法?Python DataFrame.from_items怎麽用?Python DataFrame.from_items使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas.core.frame.DataFrame
的用法示例。
在下文中一共展示了DataFrame.from_items方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_categorical_order
# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import from_items [as 別名]
def test_categorical_order(self):
# Directly construct using expected codes
# Format is is_cat, col_name, labels (in order), underlying data
expected = [(True, 'ordered', ['a', 'b', 'c', 'd', 'e'], np.arange(5)),
(True, 'reverse', ['a', 'b', 'c', 'd', 'e'], np.arange(5)[::-1]),
(True, 'noorder', ['a', 'b', 'c', 'd', 'e'], np.array([2, 1, 4, 0, 3])),
(True, 'floating', ['a', 'b', 'c', 'd', 'e'], np.arange(0, 5)),
(True, 'float_missing', ['a', 'd', 'e'], np.array([0, 1, 2, -1, -1])),
(False, 'nolabel', [1.0, 2.0, 3.0, 4.0, 5.0], np.arange(5)),
(True, 'int32_mixed', ['d', 2, 'e', 'b', 'a'], np.arange(5))]
cols = []
for is_cat, col, labels, codes in expected:
if is_cat:
cols.append((col, pd.Categorical.from_codes(codes, labels)))
else:
cols.append((col, pd.Series(labels, dtype=np.float32)))
expected = DataFrame.from_items(cols)
# Read with and with out categoricals, ensure order is identical
parsed_115 = read_stata(self.dta19_115)
parsed_117 = read_stata(self.dta19_117)
tm.assert_frame_equal(expected, parsed_115)
tm.assert_frame_equal(expected, parsed_117)
# Check identity of codes
for col in expected:
if is_categorical_dtype(expected[col]):
tm.assert_series_equal(expected[col].cat.codes,
parsed_115[col].cat.codes)
tm.assert_index_equal(expected[col].cat.categories,
parsed_115[col].cat.categories)
示例2: ri2py_listvector
# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import from_items [as 別名]
def ri2py_listvector(obj):
if 'data.frame' in obj.rclass:
items = zip(obj.do_slot('names'), (numpy2ri.ri2py(x) for x in obj))
res = PandasDataFrame.from_items(items)
else:
res = numpy2ri.ri2py(obj)
return res