當前位置: 首頁>>代碼示例>>Python>>正文


Python DataFrame.from_dict方法代碼示例

本文整理匯總了Python中pandas.core.frame.DataFrame.from_dict方法的典型用法代碼示例。如果您正苦於以下問題:Python DataFrame.from_dict方法的具體用法?Python DataFrame.from_dict怎麽用?Python DataFrame.from_dict使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pandas.core.frame.DataFrame的用法示例。


在下文中一共展示了DataFrame.from_dict方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_describe

# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import from_dict [as 別名]
    def test_describe(self):
        # string type
        desc = self.factor.describe()
        expected = DataFrame.from_dict(
            dict(counts=[3, 2, 3], freqs=[3 / 8.0, 2 / 8.0, 3 / 8.0], levels=["a", "b", "c"])
        ).set_index("levels")
        tm.assert_frame_equal(desc, expected)

        # check an integer one
        desc = Categorical([1, 2, 3, 1, 2, 3, 3, 2, 1, 1, 1]).describe()
        expected = DataFrame.from_dict(
            dict(counts=[5, 3, 3], freqs=[5 / 11.0, 3 / 11.0, 3 / 11.0], levels=[1, 2, 3])
        ).set_index("levels")
        tm.assert_frame_equal(desc, expected)
開發者ID:Libardo1,項目名稱:pandas,代碼行數:16,代碼來源:test_categorical.py

示例2: describe

# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import from_dict [as 別名]
    def describe(self):
        """
        Returns a dataframe with frequency and counts by level.
        """
        # Hack?
        from pandas.core.frame import DataFrame

        grouped = DataFrame(self.labels).groupby(0)
        counts = grouped.count().values.squeeze()
        freqs = counts / float(counts.sum())
        return DataFrame.from_dict(dict(counts=counts, freqs=freqs, levels=self.levels)).set_index("levels")
開發者ID:pombredanne,項目名稱:pandas,代碼行數:13,代碼來源:categorical.py

示例3: dataframe_from_universe_dict

# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import from_dict [as 別名]
def dataframe_from_universe_dict(universe_dict):
    timestamps = []
    outer_frames = []
    for timestamp, hl_ticker_dict in universe_dict.iteritems():
        timestamps.append(timestamp)
        
        inner_frames = []
        hl_tickers = []
        for hl_ticker, low_level_ticker_dict in hl_ticker_dict.iteritems():
            hl_tickers.append(hl_ticker)
            inner_frames.append(DataFrame.from_dict(low_level_ticker_dict, orient='index'))
        hl_ticker_frame = pd.concat(inner_frames, keys=hl_tickers)
        outer_frames.append(hl_ticker_frame)
        
    universe_df = pd.concat(outer_frames, keys=timestamps)
    return universe_df
開發者ID:CarterBain,項目名稱:AlephNull,代碼行數:18,代碼來源:dummy_futures_data_generator.py

示例4: tee

# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import from_dict [as 別名]
from pandas.io.pytables import HDFStore

from makstat.zavod import iter_contextual_atom_data, get_metadata


stream = (line.decode('cp1251').strip().encode('utf-8')
          for line in stdin)

# tee the stream to get the metadata for title
stream, stream_2 = tee(stream)

title = get_metadata(stream_2)['TITLE']

df = DataFrame()
for cur_data in iter_contextual_atom_data(stream):
    current = DataFrame.from_dict([cur_data])
    df = df.append(current, ignore_index=False)

index_cols = list(df.columns.values)
index_cols.remove('value')
df.set_index(index_cols, inplace=True)
df.columns = [title]

# create removable temp file for use with HDFStore
tmpfile = NamedTemporaryFile().name

store = HDFStore(tmpfile)
store['default'] = df
store.close()

# put h5 file to stdout
開發者ID:petrushev,項目名稱:makstat,代碼行數:33,代碼來源:px2h5.py


注:本文中的pandas.core.frame.DataFrame.from_dict方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。