本文整理匯總了Python中pandas.core.frame.DataFrame.append方法的典型用法代碼示例。如果您正苦於以下問題:Python DataFrame.append方法的具體用法?Python DataFrame.append怎麽用?Python DataFrame.append使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas.core.frame.DataFrame
的用法示例。
在下文中一共展示了DataFrame.append方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: lookup_last_week_weather
# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import append [as 別名]
def lookup_last_week_weather(look_str, weatherDF, weather_station=1):
now = datetime.strptime(look_str, "%Y-%m-%d")
weathers = DataFrame()
for i in range(35):
one_day = timedelta(days=i)
now1 = now - one_day
row = weatherDF[(weatherDF.Date == now1.strftime("%Y-%m-%d")) & (weatherDF.Station == weather_station)]
weathers = weathers.append(row)
return weathers
示例2: ReadStandardData
# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import append [as 別名]
def ReadStandardData(file_name):
Data=DataFrame({})
f=open(file_name,'r')
while True:
new_line=standard_form_data._AnalyseStandardLine(f.readline())
if type(new_line) is DataFrame:
Data=Data.append(new_line,ignore_index=True)
elif new_line == '#':
continue
elif new_line==None:
break
f.close()
return Data
示例3: run
# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import append [as 別名]
def run(self):
self.sem.acquire()
while datetime.now() < self.timeout:
try:
# Randomy length dataframe to keep appending to
df = DataFrame({'v': [self.last]}, [datetime.now()])
for i in range(random.randint(1, 10)):
df = df.append(DataFrame({'v': [self.last + i]}, [datetime.now()]))
self.last + i
df.index.name = 'index'
self.lib.append('symbol', df)
assert self.last in self.lib.read('symbol').data['v'].tolist()
self.last += 2
except OptimisticLockException:
# Concurrent write, not successful
pass
示例4: average_csv_data
# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import append [as 別名]
def average_csv_data(patients, filename, target, *data_path):
data_path = data_path[0]
df_list = []
for p in data_path:
df = DataFrame(columns=['clip',target])
for patient in patients:
d = read_csv(p + '/' + patient + target + '.csv')
df = df.append(d)
df_list.append(df)
avg_df = DataFrame(columns=['clip', target])
avg_df['clip'] = df_list[0]['clip']
avg_df[target] = 0
for df in df_list:
avg_df[target] += df[target]
avg_df[target] /= 1.0 * len(df_list)
with open(filename+'.csv', 'wb') as f:
avg_df.to_csv(f, header=True, index=False)
示例5: enumerate
# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import append [as 別名]
Data=DataFrame({})
for ith,document in enumerate(input_list):
if ith%100==0:
print('recording %ith, total %i'%(ith,total))
spectr=ReadNMSSMToolsSpectr(document,ignore=ignore)
# inNumber=re.findall(r'\d+',document)[-1]
# outNumber+=1 # reNumber
col_name=['No_','path']
value_row=[ith,document]
for block,code_value_dict in spectr.__dict__.items():
# print(block_name)
try:
code_2_name=getattr(block_table,block)
except AttributeError:
continue
else:
for code,value in code_value_dict.items():
try:
col_name.append(code_2_name(code))
except KeyError:
raise# continue
else:
value_row.append(value)
Data=Data.append(
DataFrame(numpy.array([value_row]),columns=col_name),
ignore_index=True)
Data.to_csv('Data_%s.csv'%similarity)
示例6: tee
# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import append [as 別名]
from makstat.zavod import iter_contextual_atom_data, get_metadata
stream = (line.decode('cp1251').strip().encode('utf-8')
for line in stdin)
# tee the stream to get the metadata for title
stream, stream_2 = tee(stream)
title = get_metadata(stream_2)['TITLE']
df = DataFrame()
for cur_data in iter_contextual_atom_data(stream):
current = DataFrame.from_dict([cur_data])
df = df.append(current, ignore_index=False)
index_cols = list(df.columns.values)
index_cols.remove('value')
df.set_index(index_cols, inplace=True)
df.columns = [title]
# create removable temp file for use with HDFStore
tmpfile = NamedTemporaryFile().name
store = HDFStore(tmpfile)
store['default'] = df
store.close()
# put h5 file to stdout
with open(tmpfile, 'rb') as f:
示例7: _h_index
# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import append [as 別名]
def _h_index(self):
K = self.model.K
topic_counts = {}
for i in range(K):
sys.stdout.flush()
# find the words in this topic above the threshold
topic_words = self.topicdf.ix[:, i]
topic_words = topic_words.iloc[topic_words.nonzero()[0]]
fragment_words = {}
loss_words = {}
for word in topic_words.index:
tokens = word.split('_')
word_type = tokens[0]
value = tokens[1]
if word_type == 'fragment':
fragment_words[value] = 0
elif word_type == 'loss':
loss_words[value] = 0
# find the documents in this topic above the threshold
topic_docs = self.docdf.ix[i, :]
topic_docs = topic_docs.iloc[topic_docs.nonzero()[0]]
# handle empty topics
if topic_docs.empty:
topic_counts[i] = 0
else:
# now find out how many of the documents in this topic actually 'cite' the words
for docname in topic_docs.index:
# split mz_rt_peakid string into tokens
tokens = docname.split('_')
peakid = int(tokens[2])
# find all the fragment peaks of this parent peak
ms2_rows = self.ms2.loc[self.ms2['MSnParentPeakID']==peakid]
fragment_bin_ids = ms2_rows[['fragment_bin_id']]
loss_bin_ids = ms2_rows[['loss_bin_id']]
# convert from pandas dataframes to list
fragment_bin_ids = fragment_bin_ids.values.ravel().tolist()
loss_bin_ids = loss_bin_ids.values.ravel().tolist()
# this code is too slow!
# count the citation numbers
# for cited in fragment_bin_ids:
# if cited == 'nan':
# continue
# else:
# if cited in fragment_words:
# fragment_words[cited] = fragment_words[cited] + 1
# for cited in loss_bin_ids:
# if cited == 'nan':
# continue
# else:
# if cited in loss_words:
# loss_words[cited] = loss_words[cited] + 1
# convert to dictionary for quick lookup
word_dict = {}
for word in fragment_bin_ids:
word_dict.update({word:word})
for word in loss_bin_ids:
word_dict.update({word:word})
# count the citation numbers
for word in fragment_words:
if word in word_dict:
fragment_words[word] = fragment_words[word] + 1
for word in loss_words:
if word in word_dict:
loss_words[word] = loss_words[word] + 1
# make a dataframe of the articles & citation counts
fragment_df = DataFrame(fragment_words, index=['counts']).transpose()
loss_df = DataFrame(loss_words, index=['counts']).transpose()
df = fragment_df.append(loss_df)
df = df.sort(['counts'], ascending=False)
# compute the h-index
h_index = 0
for index, row in df.iterrows():
if row['counts'] > h_index:
h_index += 1
else:
break
print " - Mass2Motif " + str(i) + " h-index = " + str(h_index)
topic_counts[i] = h_index
return topic_counts
示例8: _h_index
# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import append [as 別名]
def _h_index(self):
topic_counts = {}
n_topics = self.model.K
for i in range(n_topics):
sys.stdout.flush()
# find the words in this topic above the threshold
fragment_words = self._get_nonzero_words(i, self.topicdfs, 0)
loss_words = self._get_nonzero_words(i, self.topicdfs, 1)
# find the documents in this topic above the threshold
topic_docs = self.docdf.ix[i, :]
topic_docs = topic_docs.iloc[topic_docs.nonzero()[0]]
# handle empty topics
if topic_docs.empty:
topic_counts[i] = 0
else:
# now find out how many of the documents in this topic actually 'cite' the words
for docname in topic_docs.index:
# split mz_rt_peakid string into tokens
tokens = docname.split('_')
peakid = int(tokens[2])
# find all the fragment peaks of this parent peak
ms2_rows = self.ms2.loc[self.ms2['MSnParentPeakID']==peakid]
fragment_bin_ids = ms2_rows[['fragment_bin_id']]
loss_bin_ids = ms2_rows[['loss_bin_id']]
# convert from pandas dataframes to list
fragment_bin_ids = fragment_bin_ids.values.ravel().tolist()
loss_bin_ids = loss_bin_ids.values.ravel().tolist()
# count the citation numbers
for cited in fragment_bin_ids:
if cited == 'nan':
continue
else:
if cited in fragment_words:
fragment_words[cited] = fragment_words[cited] + 1
for cited in loss_bin_ids:
if cited == 'nan':
continue
else:
if cited in loss_words:
loss_words[cited] = loss_words[cited] + 1
# make a dataframe of the articles & citation counts
fragment_df = DataFrame(fragment_words, index=['counts']).transpose()
loss_df = DataFrame(loss_words, index=['counts']).transpose()
df = fragment_df.append(loss_df)
df = df.sort(['counts'], ascending=False)
# compute the h-index
h_index = 0
for index, row in df.iterrows():
if row['counts'] > h_index:
h_index += 1
else:
break
topic_counts[i] = h_index
return topic_counts
示例9: DataFrame
# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import append [as 別名]
repos_with_kw_docker_2015_filepath = data_files_path + \
'repos_with_docker_2015.csv'
df_github_repos_with_kw_docker_2011_to_2014 = DataFrame(pandas.read_csv(
repos_with_kw_docker_2011_to_2014_filepath
)['repository_url'])
def apiurl_to_repourl(apiurl):
return apiurl.replace('api.', '').replace('repos/', '')
df_repos_2015 = pandas.read_csv(repos_with_kw_docker_2015_filepath)['repo_url']
df_github_repos_with_kw_docker_2015 = DataFrame({
'repository_url': map(apiurl_to_repourl, df_repos_2015)
})
df_repo_urls_with_kw_docker_2011_to_2015 = \
df_github_repos_with_kw_docker_2011_to_2014.append(
df_github_repos_with_kw_docker_2015,
ignore_index=True
)
def make_test_dataset(**kwargs):
samplesize = kwargs['sample_size']
testdf = df_repo_urls_with_kw_docker_2011_to_2015[:samplesize]
# print testdf['repository_url'].drop_duplicates().values.tolist()
return testdf['repository_url'].drop_duplicates().values.tolist()
示例10: weather_data
# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import append [as 別名]
now1 = now - one_day
row = weatherDF[(weatherDF.Date == now1.strftime("%Y-%m-%d")) & (weatherDF.Station == weather_station)]
weathers = weathers.append(row)
return weathers
def weather_data(look_str, weatherDF):
features = ["Tmax","Tmin","Tavg","DewPoint", "WetBulb", "Heat","Cool","SnowFall", "PrecipTotal", "ResultSpeed"]
weather_week0 = lookup_last_week_weather(look_str, weatherDF)
weather_week = weather_week0[features]
averagesS = weather_week.mean(0)
maxs = weather_week.max(0)
maxsS = pd.Series()
mins = weather_week.min(0)
minsS = pd.Series()
for f in features:
maxsS["%s_max" % f] = maxs[f]
minsS["%s_min" % f] = mins[f]
#datapoints = pd.concat([averagesS, maxsS, minsS])
datapoints = averagesS
weather_data = DataFrame(datapoints).T
weather_data["Date"] = look_str
return weather_data
weather_avg = DataFrame()
dates = weather["Date"]
for d in dates:
row = weather_data(d, weather)
weather_avg= weather_avg.append(row, ignore_index=True)
weather_avg.to_csv(os.path.join(data_dir,'weather_info_averages5.csv'), index=False)
# duplicates()