當前位置: 首頁>>代碼示例>>Python>>正文


Python AdaptiveScalarEncoder.topDownCompute方法代碼示例

本文整理匯總了Python中nupic.encoders.adaptivescalar.AdaptiveScalarEncoder.topDownCompute方法的典型用法代碼示例。如果您正苦於以下問題:Python AdaptiveScalarEncoder.topDownCompute方法的具體用法?Python AdaptiveScalarEncoder.topDownCompute怎麽用?Python AdaptiveScalarEncoder.topDownCompute使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在nupic.encoders.adaptivescalar.AdaptiveScalarEncoder的用法示例。


在下文中一共展示了AdaptiveScalarEncoder.topDownCompute方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: DeltaEncoder

# 需要導入模塊: from nupic.encoders.adaptivescalar import AdaptiveScalarEncoder [as 別名]
# 或者: from nupic.encoders.adaptivescalar.AdaptiveScalarEncoder import topDownCompute [as 別名]
class DeltaEncoder(AdaptiveScalarEncoder):
  """
  This is an implementation of a delta encoder. The delta encoder encodes differences between           # to_note: so basically different input values can have
  successive scalar values instead of encoding the actual values. It returns an actual value when       # the same representation. The only value that matters
  decoding and not a delta.                                                                             # is the difference between the current input and the last input
  """                     # problem_with_this_approach: the fact that it uses adaptive scalar encoder makes learning highly improbable, since with each
                          # new maximum or minimum value, the whole encoding scheme changes, and this change in the encoded representation can easily
                          # mess whatever the machine has learned so far. Worse, the machine will not even recognize why it is wrong. The developers
                          # are really going over and abusing the knowledge that the brain can handle various kind of data. Yes, the brain can handle new
                          # encoded representation, however it takes a lot of time, and the change in encoded representation is not this arbitrary. With
                          # this kind of arbirtrary (encoding scheme changes merely whenever new max or min input is presented), even the brain's learning
                          # algorithm will be messed up.


  def __init__(self, w, minval=None, maxval=None, periodic=False, n=0, radius=0,
                resolution=0, name=None, verbosity=0, clipInput=True, forced=False):
    """[ScalarEncoder class method override]"""
    self._learningEnabled = True
    self._stateLock = False
    self.width = 0
    self.encoders = None
    self.description = []
    self.name = name
    if periodic:
      #Delta scalar encoders take non-periodic inputs only
      raise Exception('Delta encoder does not encode periodic inputs')
    assert n!=0           #An adaptive encoder can only be intialized using n

    self._adaptiveScalarEnc = AdaptiveScalarEncoder(w=w, n=n, minval=minval,
                   maxval=maxval, clipInput=True, name=name, verbosity=verbosity, forced=forced)
    self.width+=self._adaptiveScalarEnc.getWidth()
    self.n = self._adaptiveScalarEnc.n
    self._prevAbsolute = None    #how many inputs have been sent to the encoder?
    self._prevDelta = None

  def encodeIntoArray(self, input, output, learn=None):
    if not isinstance(input, numbers.Number):
      raise TypeError(
          "Expected a scalar input but got input of type %s" % type(input))

    if learn is None:
      learn =  self._learningEnabled
    if input == SENTINEL_VALUE_FOR_MISSING_DATA:
      output[0:self.n] = 0
    else:
      #make the first delta zero so that the delta ranges are not messed up.
      if self._prevAbsolute==None:
        self._prevAbsolute= input
      delta = input - self._prevAbsolute
      self._adaptiveScalarEnc.encodeIntoArray(delta, output, learn)         # to_note: generate a representation for the difference between the current
      if not self._stateLock:                                               # input and the last input.
        self._prevAbsolute = input
        self._prevDelta = delta
      return output

  ############################################################################
  def setStateLock(self, lock):
    self._stateLock = lock
  ############################################################################
  def setFieldStats(self, fieldName, fieldStatistics):
    pass
  ############################################################################
  def getBucketIndices(self, input, learn=None):
    return self._adaptiveScalarEnc.getBucketIndices(input, learn)
  ############################################################################
  def getBucketInfo(self, buckets):
    return self._adaptiveScalarEnc.getBucketInfo(buckets)
  ############################################################################
  def topDownCompute(self, encoded):
    """[ScalarEncoder class method override]"""

    #Decode to delta scalar
    if self._prevAbsolute==None or self._prevDelta==None:
      return [EncoderResult(value=0, scalar=0,
                             encoding=numpy.zeros(self.n))]
    ret = self._adaptiveScalarEnc.topDownCompute(encoded)
    if self._prevAbsolute != None:
      ret = [EncoderResult(value=ret[0].value+self._prevAbsolute,
                          scalar=ret[0].scalar+self._prevAbsolute,
                          encoding=ret[0].encoding)]                    # problem_with_this_approach: encoded houses the value of delta, so it should
#      ret[0].value+=self._prevAbsolute                                 # the decoding scheme in topDownCompute will generate delta. If we add that delta
#      ret[0].scalar+=self._prevAbsolute                                # to the previous absolute scalar, we will get a completely useless result
    return ret


  @classmethod
  def read(cls, proto):
    encoder = object.__new__(cls)
    encoder.width = proto.width
    encoder.name = proto.name or None
    encoder.n = proto.n
    encoder._adaptiveScalarEnc = (
      AdaptiveScalarEncoder.read(proto.adaptiveScalarEnc)
    )
    encoder._prevAbsolute = proto.prevAbsolute
    encoder._prevDelta = proto.prevDelta
    encoder._stateLock = proto.stateLock
    return encoder


#.........這裏部分代碼省略.........
開發者ID:trung-duc,項目名稱:mac-nupic,代碼行數:103,代碼來源:delta.py

示例2: DeltaEncoder

# 需要導入模塊: from nupic.encoders.adaptivescalar import AdaptiveScalarEncoder [as 別名]
# 或者: from nupic.encoders.adaptivescalar.AdaptiveScalarEncoder import topDownCompute [as 別名]
class DeltaEncoder(AdaptiveScalarEncoder):
  """
  This is an implementation of a delta encoder. The delta encoder encodes differences between
  successive scalar values instead of encoding the actual values. It returns an actual value when
  decoding and not a delta.
  """


  def __init__(self, w, minval=None, maxval=None, periodic=False, n=0, radius=0,
                resolution=0, name=None, verbosity=0, clipInput=True):
    """[ScalarEncoder class method override]"""
    self._learningEnabled = True
    self._stateLock = False
    self.width = 0
    self.encoders = None
    self.description = []
    self.name = name
    if periodic:
      #Delta scalar encoders take non-periodic inputs only
      raise Exception('Delta encoder does not encode periodic inputs')
    assert n!=0           #An adaptive encoder can only be intialized using n

    self._adaptiveScalarEnc = AdaptiveScalarEncoder(w=w, n=n, minval=minval,
                   maxval=maxval, clipInput=True, name=name, verbosity=verbosity)
    self.width+=self._adaptiveScalarEnc.getWidth()
    self.n = self._adaptiveScalarEnc.n
    self._prevAbsolute = None    #how many inputs have been sent to the encoder?
    self._prevDelta = None

  def encodeIntoArray(self, input, output, learn=None):

    if learn is None:
      learn =  self._learningEnabled
    if input == SENTINEL_VALUE_FOR_MISSING_DATA:
      output[0:self.n] = 0
    else:
      #make the first delta zero so that the delta ranges are not messed up.
      if self._prevAbsolute==None:
        self._prevAbsolute= input
      delta = input - self._prevAbsolute
      self._adaptiveScalarEnc.encodeIntoArray(delta, output, learn)
      if not self._stateLock:
        self._prevAbsolute = input
        self._prevDelta = delta
      return output

  ############################################################################
  def setStateLock(self, lock):
    self._stateLock = lock
  ############################################################################
  def setFieldStats(self, fieldName, fieldStatistics):
    pass
  ############################################################################
  def isDelta(self):
    return True
  ############################################################################
  def getBucketIndices(self, input, learn=None):
    return self._adaptiveScalarEnc.getBucketIndices(input, learn)
  ############################################################################
  def getBucketInfo(self, buckets):
    return self._adaptiveScalarEnc.getBucketInfo(buckets)
  ############################################################################
  def topDownCompute(self, encoded):
    """[ScalarEncoder class method override]"""

    #Decode to delta scalar
    if self._prevAbsolute==None or self._prevDelta==None:
      return [EncoderResult(value=0, scalar=0,
                             encoding=numpy.zeros(self.n))]
    ret = self._adaptiveScalarEnc.topDownCompute(encoded)
    if self._prevAbsolute != None:
      ret = [EncoderResult(value=ret[0].value+self._prevAbsolute,
                          scalar=ret[0].scalar+self._prevAbsolute,
                          encoding=ret[0].encoding)]
#      ret[0].value+=self._prevAbsolute
#      ret[0].scalar+=self._prevAbsolute
    return ret
開發者ID:DarkyMago,項目名稱:nupic,代碼行數:79,代碼來源:delta.py

示例3: DeltaEncoder

# 需要導入模塊: from nupic.encoders.adaptivescalar import AdaptiveScalarEncoder [as 別名]
# 或者: from nupic.encoders.adaptivescalar.AdaptiveScalarEncoder import topDownCompute [as 別名]
class DeltaEncoder(AdaptiveScalarEncoder):
  """
  This is an implementation of a delta encoder. The delta encoder encodes differences between
  successive scalar values instead of encoding the actual values. It returns an actual value when
  decoding and not a delta.
  """


  def __init__(self, w, minval=None, maxval=None, periodic=False, n=0, radius=0,
                resolution=0, name=None, verbosity=0, clipInput=True, forced=False):
    """[ScalarEncoder class method override]"""
    self._learningEnabled = True
    self._stateLock = False
    self.width = 0
    self.encoders = None
    self.description = []
    self.name = name
    if periodic:
      #Delta scalar encoders take non-periodic inputs only
      raise Exception('Delta encoder does not encode periodic inputs')
    assert n!=0           #An adaptive encoder can only be intialized using n

    self._adaptiveScalarEnc = AdaptiveScalarEncoder(w=w, n=n, minval=minval,
                   maxval=maxval, clipInput=True, name=name, verbosity=verbosity, forced=forced)
    self.width+=self._adaptiveScalarEnc.getWidth()
    self.n = self._adaptiveScalarEnc.n
    self._prevAbsolute = None    #how many inputs have been sent to the encoder?
    self._prevDelta = None

  def encodeIntoArray(self, input, output, learn=None):
    if not isinstance(input, numbers.Number):
      raise TypeError(
          "Expected a scalar input but got input of type {0!s}".format(type(input)))

    if learn is None:
      learn =  self._learningEnabled
    if input == SENTINEL_VALUE_FOR_MISSING_DATA:
      output[0:self.n] = 0
    else:
      #make the first delta zero so that the delta ranges are not messed up.
      if self._prevAbsoluteisNone:
        self._prevAbsolute= input
      delta = input - self._prevAbsolute
      self._adaptiveScalarEnc.encodeIntoArray(delta, output, learn)
      if not self._stateLock:
        self._prevAbsolute = input
        self._prevDelta = delta
      return output


  def setStateLock(self, lock):
    self._stateLock = lock


  def setFieldStats(self, fieldName, fieldStatistics):
    pass


  def getBucketIndices(self, input, learn=None):
    return self._adaptiveScalarEnc.getBucketIndices(input, learn)


  def getBucketInfo(self, buckets):
    return self._adaptiveScalarEnc.getBucketInfo(buckets)


  def topDownCompute(self, encoded):
    """[ScalarEncoder class method override]"""

    #Decode to delta scalar
    if self._prevAbsoluteisNone or self._prevDeltaisNone:
      return [EncoderResult(value=0, scalar=0,
                             encoding=numpy.zeros(self.n))]
    ret = self._adaptiveScalarEnc.topDownCompute(encoded)
    if self._prevAbsolute is not None:
      ret = [EncoderResult(value=ret[0].value+self._prevAbsolute,
                          scalar=ret[0].scalar+self._prevAbsolute,
                          encoding=ret[0].encoding)]
#      ret[0].value+=self._prevAbsolute
#      ret[0].scalar+=self._prevAbsolute
    return ret


  @classmethod
  def read(cls, proto):
    encoder = object.__new__(cls)
    encoder.width = proto.width
    encoder.name = proto.name or None
    encoder.n = proto.n
    encoder._adaptiveScalarEnc = (
      AdaptiveScalarEncoder.read(proto.adaptiveScalarEnc)
    )
    encoder._prevAbsolute = proto.prevAbsolute
    encoder._prevDelta = proto.prevDelta
    encoder._stateLock = proto.stateLock
    return encoder


  def write(self, proto):
    proto.width = self.width
#.........這裏部分代碼省略.........
開發者ID:runt18,項目名稱:nupic,代碼行數:103,代碼來源:delta.py


注:本文中的nupic.encoders.adaptivescalar.AdaptiveScalarEncoder.topDownCompute方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。