本文整理匯總了Python中nupic.encoders.adaptivescalar.AdaptiveScalarEncoder.encode方法的典型用法代碼示例。如果您正苦於以下問題:Python AdaptiveScalarEncoder.encode方法的具體用法?Python AdaptiveScalarEncoder.encode怎麽用?Python AdaptiveScalarEncoder.encode使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類nupic.encoders.adaptivescalar.AdaptiveScalarEncoder
的用法示例。
在下文中一共展示了AdaptiveScalarEncoder.encode方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testMissingValues
# 需要導入模塊: from nupic.encoders.adaptivescalar import AdaptiveScalarEncoder [as 別名]
# 或者: from nupic.encoders.adaptivescalar.AdaptiveScalarEncoder import encode [as 別名]
def testMissingValues(self):
"""missing values"""
# forced: it's strongly recommended to use w>=21, in the example we force skip the check for readib.
mv = AdaptiveScalarEncoder(name='mv', n=14, w=3, minval=1, maxval=8, periodic=False, forced=True)
empty = mv.encode(SENTINEL_VALUE_FOR_MISSING_DATA)
print "\nEncoded missing data \'None\' as %s" % empty
self.assertEqual(empty.sum(), 0)
示例2: AdaptiveScalarTest
# 需要導入模塊: from nupic.encoders.adaptivescalar import AdaptiveScalarEncoder [as 別名]
# 或者: from nupic.encoders.adaptivescalar.AdaptiveScalarEncoder import encode [as 別名]
class AdaptiveScalarTest(unittest.TestCase):
"""Tests for AdaptiveScalarEncoder"""
def setUp(self):
# forced: it's strongly recommended to use w>=21, in the example we force
# skip the check for readibility
self._l = AdaptiveScalarEncoder(name="scalar", n=14, w=5, minval=1,
maxval=10, periodic=False, forced=True)
def testMissingValues(self):
"""missing values"""
# forced: it's strongly recommended to use w>=21, in the example we force
# skip the check for readib.
mv = AdaptiveScalarEncoder(name="mv", n=14, w=3, minval=1, maxval=8,
periodic=False, forced=True)
empty = mv.encode(SENTINEL_VALUE_FOR_MISSING_DATA)
self.assertEqual(empty.sum(), 0)
def testNonPeriodicEncoderMinMaxSpec(self):
"""Non-periodic encoder, min and max specified"""
self.assertTrue(numpy.array_equal(
self._l.encode(1),
numpy.array([1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
dtype=defaultDtype)))
self.assertTrue(numpy.array_equal(
self._l.encode(2),
numpy.array([0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
dtype=defaultDtype)))
self.assertTrue(numpy.array_equal(
self._l.encode(10),
numpy.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1],
dtype=defaultDtype)))
def testTopDownDecode(self):
"""Test the input description generation and topDown decoding"""
l = self._l
v = l.minval
while v < l.maxval:
output = l.encode(v)
decoded = l.decode(output)
(fieldsDict, _) = decoded
self.assertEqual(len(fieldsDict), 1)
(ranges, _) = fieldsDict.values()[0]
self.assertEqual(len(ranges), 1)
(rangeMin, rangeMax) = ranges[0]
self.assertEqual(rangeMin, rangeMax)
self.assertLess(abs(rangeMin - v), l.resolution)
topDown = l.topDownCompute(output)[0]
self.assertLessEqual(abs(topDown.value - v), l.resolution)
# Test bucket support
bucketIndices = l.getBucketIndices(v)
topDown = l.getBucketInfo(bucketIndices)[0]
self.assertLessEqual(abs(topDown.value - v), l.resolution / 2)
self.assertEqual(topDown.value, l.getBucketValues()[bucketIndices[0]])
self.assertEqual(topDown.scalar, topDown.value)
self.assertTrue(numpy.array_equal(topDown.encoding, output))
# Next value
v += l.resolution / 4
def testFillHoles(self):
"""Make sure we can fill in holes"""
l=self._l
decoded = l.decode(numpy.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1]))
(fieldsDict, _) = decoded
self.assertEqual(len(fieldsDict), 1)
(ranges, _) = fieldsDict.values()[0]
self.assertEqual(len(ranges), 1)
self.assertSequenceEqual(ranges[0], [10, 10])
decoded = l.decode(numpy.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1]))
(fieldsDict, _) = decoded
self.assertEqual(len(fieldsDict), 1)
(ranges, _) = fieldsDict.values()[0]
self.assertEqual(len(ranges), 1)
self.assertSequenceEqual(ranges[0], [10, 10])
def testNonPeriodicEncoderMinMaxNotSpec(self):
"""Non-periodic encoder, min and max not specified"""
l = AdaptiveScalarEncoder(name="scalar", n=14, w=5, minval=None,
maxval=None, periodic=False, forced=True)
def _verify(v, encoded, expV=None):
if expV is None:
expV = v
self.assertTrue(numpy.array_equal(
#.........這裏部分代碼省略.........
示例3: AdaptiveScalarTest
# 需要導入模塊: from nupic.encoders.adaptivescalar import AdaptiveScalarEncoder [as 別名]
# 或者: from nupic.encoders.adaptivescalar.AdaptiveScalarEncoder import encode [as 別名]
class AdaptiveScalarTest(unittest.TestCase):
"""Tests for AdaptiveScalarEncoder"""
def setUp(self):
# forced: it's strongly recommended to use w>=21, in the example we force skip the check for readibility
self._l = AdaptiveScalarEncoder(name='scalar', n=14, w=5, minval=1, maxval=10,
periodic=False, forced=True)
def testMissingValues(self):
"""missing values"""
# forced: it's strongly recommended to use w>=21, in the example we force skip the check for readib.
mv = AdaptiveScalarEncoder(name='mv', n=14, w=3, minval=1, maxval=8, periodic=False, forced=True)
empty = mv.encode(SENTINEL_VALUE_FOR_MISSING_DATA)
print "\nEncoded missing data \'None\' as %s" % empty
self.assertEqual(empty.sum(), 0)
def testNonPeriodicEncoderMinMaxSpec(self):
"""Non-periodic encoder, min and max specified"""
self.assertTrue((self._l.encode(1) == numpy.array([1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
dtype=defaultDtype)).all())
self.assertTrue((self._l.encode(2) == numpy.array([0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
dtype=defaultDtype)).all())
self.assertTrue((self._l.encode(10) == numpy.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1],
dtype=defaultDtype)).all())
def testTopDownDecode(self):
"""Test the input description generation and topDown decoding"""
l=self._l
v = l.minval
print "\nTesting non-periodic encoder decoding, resolution of %f..." % \
l.resolution
while v < l.maxval:
output = l.encode(v)
decoded = l.decode(output)
print "decoding", output, "(%f)=>" % v, l.decodedToStr(decoded)
(fieldsDict, fieldNames) = decoded
self.assertEqual(len(fieldsDict), 1)
(ranges, desc) = fieldsDict.values()[0]
self.assertEqual(len(ranges), 1)
(rangeMin, rangeMax) = ranges[0]
self.assertEqual(rangeMin, rangeMax)
self.assertTrue(abs(rangeMin - v) < l.resolution)
topDown = l.topDownCompute(output)[0]
print "topdown =>", topDown
self.assertTrue(abs(topDown.value - v) <= l.resolution)
# Test bucket support
bucketIndices = l.getBucketIndices(v)
print "bucket index =>", bucketIndices[0]
topDown = l.getBucketInfo(bucketIndices)[0]
self.assertTrue(abs(topDown.value - v) <= l.resolution / 2)
self.assertEqual(topDown.value, l.getBucketValues()[bucketIndices[0]])
self.assertEqual(topDown.scalar, topDown.value)
self.assertTrue((topDown.encoding == output).all())
# Next value
v += l.resolution / 4
def testFillHoles(self):
"""Make sure we can fill in holes"""
l=self._l
decoded = l.decode(numpy.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1]))
(fieldsDict, fieldNames) = decoded
self.assertEqual(len(fieldsDict), 1)
(ranges, desc) = fieldsDict.values()[0]
self.assertEqual(len(ranges), 1)
self.assertSequenceEqual(ranges[0], [10, 10])
print "decodedToStr of", ranges, "=>", l.decodedToStr(decoded)
decoded = l.decode(numpy.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1]))
(fieldsDict, fieldNames) = decoded
self.assertEqual(len(fieldsDict), 1)
(ranges, desc) = fieldsDict.values()[0]
self.assertEqual(len(ranges), 1)
self.assertSequenceEqual(ranges[0], [10, 10])
print "decodedToStr of", ranges, "=>", l.decodedToStr(decoded)
def testNonPeriodicEncoderMinMaxNotSpec(self):
"""Non-periodic encoder, min and max not specified"""
l = AdaptiveScalarEncoder(name='scalar', n=14, w=5, minval=None, maxval=None,
periodic=False, forced=True)
def _verify(v, encoded, expV=None):
if expV is None:
expV = v
self.assertTrue((l.encode(v) == numpy.array(encoded, dtype=defaultDtype)).all())
self.assertTrue(abs(l.getBucketInfo(l.getBucketIndices(v))[0].value - expV) <= \
l.resolution/2)
def _verifyNot(v, encoded):
self.assertFalse((l.encode(v) == numpy.array(encoded, dtype=defaultDtype)).all())
_verify(1, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0])
_verify(2, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
#.........這裏部分代碼省略.........
示例4: testMissingValues
# 需要導入模塊: from nupic.encoders.adaptivescalar import AdaptiveScalarEncoder [as 別名]
# 或者: from nupic.encoders.adaptivescalar.AdaptiveScalarEncoder import encode [as 別名]
def testMissingValues(self):
"""missing values"""
mv = AdaptiveScalarEncoder(name='mv', n=14, w=3, minval=1, maxval=8, periodic=False)
empty = mv.encode(SENTINEL_VALUE_FOR_MISSING_DATA)
print "\nEncoded missing data \'None\' as %s" % empty
self.assertEqual(empty.sum(), 0)