當前位置: 首頁>>代碼示例>>Python>>正文


Python adaptivescalar.AdaptiveScalarEncoder類代碼示例

本文整理匯總了Python中nupic.encoders.adaptivescalar.AdaptiveScalarEncoder的典型用法代碼示例。如果您正苦於以下問題:Python AdaptiveScalarEncoder類的具體用法?Python AdaptiveScalarEncoder怎麽用?Python AdaptiveScalarEncoder使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了AdaptiveScalarEncoder類的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: testMissingValues

 def testMissingValues(self):
   """missing values"""
   # forced: it's strongly recommended to use w>=21, in the example we force skip the check for readib.
   mv = AdaptiveScalarEncoder(name='mv', n=14, w=3, minval=1, maxval=8, periodic=False, forced=True)
   empty = mv.encode(SENTINEL_VALUE_FOR_MISSING_DATA)
   print "\nEncoded missing data \'None\' as %s" % empty
   self.assertEqual(empty.sum(), 0)
開發者ID:ARK1988,項目名稱:nupic,代碼行數:7,代碼來源:adaptivescalar_test.py

示例2: testSetFieldStats

    def testSetFieldStats(self):
      """Test setting the min and max using setFieldStats"""
      def _dumpParams(enc):
        return (enc.n, enc.w, enc.minval, enc.maxval, enc.resolution,
                enc._learningEnabled, enc.recordNum, 
                enc.radius, enc.rangeInternal, enc.padding, enc.nInternal)
      sfs = AdaptiveScalarEncoder(name='scalar', n=14, w=5, minval=1, maxval=10,
                                periodic=False, forced=True)
      reg = AdaptiveScalarEncoder(name='scalar', n=14, w=5, minval=1, maxval=100,
                                periodic=False, forced=True)
      self.assertTrue(_dumpParams(sfs) != _dumpParams(reg), "Params should not be equal, "\
                "since the two encoders were instantiated with different values.")
      # set the min and the max using sFS to 1,100 respectively.
      sfs.setFieldStats('this',{"this":{"min":1,"max":100}})

      #Now the parameters for both should be the same
      self.assertEqual(_dumpParams(sfs), _dumpParams(reg), "Params should now be equal, "\
            "but they are not. sFS should be equivalent to initialization.")
開發者ID:ARK1988,項目名稱:nupic,代碼行數:18,代碼來源:adaptivescalar_test.py

示例3: read

 def read(cls, proto):
   encoder = object.__new__(cls)
   encoder.width = proto.width
   encoder.name = proto.name or None
   encoder.n = proto.n
   encoder._adaptiveScalarEnc = (
     AdaptiveScalarEncoder.read(proto.adaptiveScalarEnc)
   )
   encoder._prevAbsolute = proto.prevAbsolute
   encoder._prevDelta = proto.prevDelta
   encoder._stateLock = proto.stateLock
   return encoder
開發者ID:trung-duc,項目名稱:mac-nupic,代碼行數:12,代碼來源:delta.py

示例4: testNonPeriodicEncoderMinMaxNotSpec

  def testNonPeriodicEncoderMinMaxNotSpec(self):
    """Non-periodic encoder, min and max not specified"""
    l = AdaptiveScalarEncoder(name="scalar", n=14, w=5, minval=None,
                              maxval=None, periodic=False, forced=True)

    def _verify(v, encoded, expV=None):
      if expV is None:
        expV = v

      self.assertTrue(numpy.array_equal(
        l.encode(v),
        numpy.array(encoded, dtype=defaultDtype)))
      self.assertLessEqual(
        abs(l.getBucketInfo(l.getBucketIndices(v))[0].value - expV),
        l.resolution/2)

    def _verifyNot(v, encoded):
      self.assertFalse(numpy.array_equal(
        l.encode(v), numpy.array(encoded, dtype=defaultDtype)))

    _verify(1, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0])
    _verify(2, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verify(10, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verify(3, [0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0])
    _verify(-9, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0])
    _verify(-8, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0])
    _verify(-7, [0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0])
    _verify(-6, [0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0])
    _verify(-5, [0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0])
    _verify(0, [0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0])
    _verify(8, [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0])
    _verify(8, [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0])
    _verify(10, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verify(11, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verify(12, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verify(13, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verify(14, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verify(15, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])


    #"""Test switching learning off"""
    l = AdaptiveScalarEncoder(name="scalar", n=14, w=5, minval=1, maxval=10,
                              periodic=False, forced=True)
    _verify(1, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0])
    _verify(10, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verify(20, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verify(10, [0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0])

    l.setLearning(False)
    _verify(30, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1], expV=20)
    _verify(20, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verify(-10, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], expV=1)
    _verify(-1, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], expV=1)

    l.setLearning(True)
    _verify(30, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verifyNot(20, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verify(-10, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0])
    _verifyNot(-1, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0])
開發者ID:Afey,項目名稱:nupic,代碼行數:59,代碼來源:adaptivescalar_test.py

示例5: __init__

  def __init__(self, w, minval=None, maxval=None, periodic=False, n=0, radius=0,
                resolution=0, name=None, verbosity=0, clipInput=True):
    """[ScalarEncoder class method override]"""
    self._learningEnabled = True
    self._stateLock = False
    self.width = 0
    self.encoders = None
    self.description = []
    self.name = name
    if periodic:
      #Delta scalar encoders take non-periodic inputs only
      raise Exception('Delta encoder does not encode periodic inputs')
    assert n!=0           #An adaptive encoder can only be intialized using n

    self._adaptiveScalarEnc = AdaptiveScalarEncoder(w=w, n=n, minval=minval,
                   maxval=maxval, clipInput=True, name=name, verbosity=verbosity)
    self.width+=self._adaptiveScalarEnc.getWidth()
    self.n = self._adaptiveScalarEnc.n
    self._prevAbsolute = None    #how many inputs have been sent to the encoder?
    self._prevDelta = None
開發者ID:DarkyMago,項目名稱:nupic,代碼行數:20,代碼來源:delta.py

示例6: testReadWrite

  def testReadWrite(self):

    originalValue = self._l.encode(1)

    proto1 = AdaptiveScalarEncoderProto.new_message()
    self._l.write(proto1)

    # Write the proto to a temp file and read it back into a new proto
    with tempfile.TemporaryFile() as f:
      proto1.write(f)
      f.seek(0)
      proto2 = AdaptiveScalarEncoderProto.read(f)

    encoder = AdaptiveScalarEncoder.read(proto2)

    self.assertIsInstance(encoder, AdaptiveScalarEncoder)
    self.assertEqual(encoder.recordNum, self._l.recordNum)
    self.assertDictEqual(encoder.slidingWindow.__dict__,
                         self._l.slidingWindow.__dict__)
    self.assertEqual(encoder.w, self._l.w)
    self.assertEqual(encoder.minval, self._l.minval)
    self.assertEqual(encoder.maxval, self._l.maxval)
    self.assertEqual(encoder.periodic, self._l.periodic)
    self.assertEqual(encoder.n, self._l.n)
    self.assertEqual(encoder.radius, self._l.radius)
    self.assertEqual(encoder.resolution, self._l.resolution)
    self.assertEqual(encoder.name, self._l.name)
    self.assertEqual(encoder.verbosity, self._l.verbosity)
    self.assertEqual(encoder.clipInput, self._l.clipInput)
    self.assertTrue(numpy.array_equal(encoder.encode(1), originalValue))
    self.assertEqual(self._l.decode(encoder.encode(1)),
                     encoder.decode(self._l.encode(1)))

    # Feed in a new value and ensure the encodings match
    result1 = self._l.encode(7)
    result2 = encoder.encode(7)
    self.assertTrue(numpy.array_equal(result1, result2))
開發者ID:Afey,項目名稱:nupic,代碼行數:37,代碼來源:adaptivescalar_test.py

示例7: DeltaEncoder

class DeltaEncoder(AdaptiveScalarEncoder):
  """
  This is an implementation of a delta encoder. The delta encoder encodes differences between
  successive scalar values instead of encoding the actual values. It returns an actual value when
  decoding and not a delta.
  """


  def __init__(self, w, minval=None, maxval=None, periodic=False, n=0, radius=0,
                resolution=0, name=None, verbosity=0, clipInput=True):
    """[ScalarEncoder class method override]"""
    self._learningEnabled = True
    self._stateLock = False
    self.width = 0
    self.encoders = None
    self.description = []
    self.name = name
    if periodic:
      #Delta scalar encoders take non-periodic inputs only
      raise Exception('Delta encoder does not encode periodic inputs')
    assert n!=0           #An adaptive encoder can only be intialized using n

    self._adaptiveScalarEnc = AdaptiveScalarEncoder(w=w, n=n, minval=minval,
                   maxval=maxval, clipInput=True, name=name, verbosity=verbosity)
    self.width+=self._adaptiveScalarEnc.getWidth()
    self.n = self._adaptiveScalarEnc.n
    self._prevAbsolute = None    #how many inputs have been sent to the encoder?
    self._prevDelta = None

  def encodeIntoArray(self, input, output, learn=None):

    if learn is None:
      learn =  self._learningEnabled
    if input == SENTINEL_VALUE_FOR_MISSING_DATA:
      output[0:self.n] = 0
    else:
      #make the first delta zero so that the delta ranges are not messed up.
      if self._prevAbsolute==None:
        self._prevAbsolute= input
      delta = input - self._prevAbsolute
      self._adaptiveScalarEnc.encodeIntoArray(delta, output, learn)
      if not self._stateLock:
        self._prevAbsolute = input
        self._prevDelta = delta
      return output

  ############################################################################
  def setStateLock(self, lock):
    self._stateLock = lock
  ############################################################################
  def setFieldStats(self, fieldName, fieldStatistics):
    pass
  ############################################################################
  def isDelta(self):
    return True
  ############################################################################
  def getBucketIndices(self, input, learn=None):
    return self._adaptiveScalarEnc.getBucketIndices(input, learn)
  ############################################################################
  def getBucketInfo(self, buckets):
    return self._adaptiveScalarEnc.getBucketInfo(buckets)
  ############################################################################
  def topDownCompute(self, encoded):
    """[ScalarEncoder class method override]"""

    #Decode to delta scalar
    if self._prevAbsolute==None or self._prevDelta==None:
      return [EncoderResult(value=0, scalar=0,
                             encoding=numpy.zeros(self.n))]
    ret = self._adaptiveScalarEnc.topDownCompute(encoded)
    if self._prevAbsolute != None:
      ret = [EncoderResult(value=ret[0].value+self._prevAbsolute,
                          scalar=ret[0].scalar+self._prevAbsolute,
                          encoding=ret[0].encoding)]
#      ret[0].value+=self._prevAbsolute
#      ret[0].scalar+=self._prevAbsolute
    return ret
開發者ID:DarkyMago,項目名稱:nupic,代碼行數:77,代碼來源:delta.py

示例8: DeltaEncoder

class DeltaEncoder(AdaptiveScalarEncoder):
  """
  This is an implementation of a delta encoder. The delta encoder encodes differences between           # to_note: so basically different input values can have
  successive scalar values instead of encoding the actual values. It returns an actual value when       # the same representation. The only value that matters
  decoding and not a delta.                                                                             # is the difference between the current input and the last input
  """                     # problem_with_this_approach: the fact that it uses adaptive scalar encoder makes learning highly improbable, since with each
                          # new maximum or minimum value, the whole encoding scheme changes, and this change in the encoded representation can easily
                          # mess whatever the machine has learned so far. Worse, the machine will not even recognize why it is wrong. The developers
                          # are really going over and abusing the knowledge that the brain can handle various kind of data. Yes, the brain can handle new
                          # encoded representation, however it takes a lot of time, and the change in encoded representation is not this arbitrary. With
                          # this kind of arbirtrary (encoding scheme changes merely whenever new max or min input is presented), even the brain's learning
                          # algorithm will be messed up.


  def __init__(self, w, minval=None, maxval=None, periodic=False, n=0, radius=0,
                resolution=0, name=None, verbosity=0, clipInput=True, forced=False):
    """[ScalarEncoder class method override]"""
    self._learningEnabled = True
    self._stateLock = False
    self.width = 0
    self.encoders = None
    self.description = []
    self.name = name
    if periodic:
      #Delta scalar encoders take non-periodic inputs only
      raise Exception('Delta encoder does not encode periodic inputs')
    assert n!=0           #An adaptive encoder can only be intialized using n

    self._adaptiveScalarEnc = AdaptiveScalarEncoder(w=w, n=n, minval=minval,
                   maxval=maxval, clipInput=True, name=name, verbosity=verbosity, forced=forced)
    self.width+=self._adaptiveScalarEnc.getWidth()
    self.n = self._adaptiveScalarEnc.n
    self._prevAbsolute = None    #how many inputs have been sent to the encoder?
    self._prevDelta = None

  def encodeIntoArray(self, input, output, learn=None):
    if not isinstance(input, numbers.Number):
      raise TypeError(
          "Expected a scalar input but got input of type %s" % type(input))

    if learn is None:
      learn =  self._learningEnabled
    if input == SENTINEL_VALUE_FOR_MISSING_DATA:
      output[0:self.n] = 0
    else:
      #make the first delta zero so that the delta ranges are not messed up.
      if self._prevAbsolute==None:
        self._prevAbsolute= input
      delta = input - self._prevAbsolute
      self._adaptiveScalarEnc.encodeIntoArray(delta, output, learn)         # to_note: generate a representation for the difference between the current
      if not self._stateLock:                                               # input and the last input.
        self._prevAbsolute = input
        self._prevDelta = delta
      return output

  ############################################################################
  def setStateLock(self, lock):
    self._stateLock = lock
  ############################################################################
  def setFieldStats(self, fieldName, fieldStatistics):
    pass
  ############################################################################
  def getBucketIndices(self, input, learn=None):
    return self._adaptiveScalarEnc.getBucketIndices(input, learn)
  ############################################################################
  def getBucketInfo(self, buckets):
    return self._adaptiveScalarEnc.getBucketInfo(buckets)
  ############################################################################
  def topDownCompute(self, encoded):
    """[ScalarEncoder class method override]"""

    #Decode to delta scalar
    if self._prevAbsolute==None or self._prevDelta==None:
      return [EncoderResult(value=0, scalar=0,
                             encoding=numpy.zeros(self.n))]
    ret = self._adaptiveScalarEnc.topDownCompute(encoded)
    if self._prevAbsolute != None:
      ret = [EncoderResult(value=ret[0].value+self._prevAbsolute,
                          scalar=ret[0].scalar+self._prevAbsolute,
                          encoding=ret[0].encoding)]                    # problem_with_this_approach: encoded houses the value of delta, so it should
#      ret[0].value+=self._prevAbsolute                                 # the decoding scheme in topDownCompute will generate delta. If we add that delta
#      ret[0].scalar+=self._prevAbsolute                                # to the previous absolute scalar, we will get a completely useless result
    return ret


  @classmethod
  def read(cls, proto):
    encoder = object.__new__(cls)
    encoder.width = proto.width
    encoder.name = proto.name or None
    encoder.n = proto.n
    encoder._adaptiveScalarEnc = (
      AdaptiveScalarEncoder.read(proto.adaptiveScalarEnc)
    )
    encoder._prevAbsolute = proto.prevAbsolute
    encoder._prevDelta = proto.prevDelta
    encoder._stateLock = proto.stateLock
    return encoder


#.........這裏部分代碼省略.........
開發者ID:trung-duc,項目名稱:mac-nupic,代碼行數:101,代碼來源:delta.py

示例9: setUp

 def setUp(self):
   # forced: it's strongly recommended to use w>=21, in the example we force skip the check for readibility
   self._l = AdaptiveScalarEncoder(name='scalar', n=14, w=5, minval=1, maxval=10,
                             periodic=False, forced=True) 
開發者ID:ARK1988,項目名稱:nupic,代碼行數:4,代碼來源:adaptivescalar_test.py

示例10: AdaptiveScalarTest

class AdaptiveScalarTest(unittest.TestCase):
    """Tests for AdaptiveScalarEncoder"""


    def setUp(self):
      # forced: it's strongly recommended to use w>=21, in the example we force skip the check for readibility
      self._l = AdaptiveScalarEncoder(name='scalar', n=14, w=5, minval=1, maxval=10,
                                periodic=False, forced=True) 

    def testMissingValues(self):
      """missing values"""
      # forced: it's strongly recommended to use w>=21, in the example we force skip the check for readib.
      mv = AdaptiveScalarEncoder(name='mv', n=14, w=3, minval=1, maxval=8, periodic=False, forced=True)
      empty = mv.encode(SENTINEL_VALUE_FOR_MISSING_DATA)
      print "\nEncoded missing data \'None\' as %s" % empty
      self.assertEqual(empty.sum(), 0)

    def testNonPeriodicEncoderMinMaxSpec(self):
      """Non-periodic encoder, min and max specified"""
      
      self.assertTrue((self._l.encode(1) == numpy.array([1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                                         dtype=defaultDtype)).all())
      self.assertTrue((self._l.encode(2) == numpy.array([0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
                                         dtype=defaultDtype)).all())
      self.assertTrue((self._l.encode(10) == numpy.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1],
                                          dtype=defaultDtype)).all())

    def testTopDownDecode(self):
      """Test the input description generation and topDown decoding"""
      l=self._l
      v = l.minval
      print "\nTesting non-periodic encoder decoding, resolution of %f..." % \
              l.resolution
      while v < l.maxval:
        output = l.encode(v)
        decoded = l.decode(output)
        print "decoding", output, "(%f)=>" % v, l.decodedToStr(decoded)

        (fieldsDict, fieldNames) = decoded
        self.assertEqual(len(fieldsDict), 1)

        (ranges, desc) = fieldsDict.values()[0]
        self.assertEqual(len(ranges), 1)

        (rangeMin, rangeMax) = ranges[0]
        self.assertEqual(rangeMin, rangeMax)
        self.assertTrue(abs(rangeMin - v) < l.resolution)

        topDown = l.topDownCompute(output)[0]
        print "topdown =>", topDown
        self.assertTrue(abs(topDown.value - v) <= l.resolution)

        # Test bucket support
        bucketIndices = l.getBucketIndices(v)
        print "bucket index =>", bucketIndices[0]
        topDown = l.getBucketInfo(bucketIndices)[0]
        self.assertTrue(abs(topDown.value - v) <= l.resolution / 2)
        self.assertEqual(topDown.value, l.getBucketValues()[bucketIndices[0]])
        self.assertEqual(topDown.scalar, topDown.value)
        self.assertTrue((topDown.encoding == output).all())

        # Next value
        v += l.resolution / 4
    def testFillHoles(self):
      """Make sure we can fill in holes"""
      l=self._l
      decoded = l.decode(numpy.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1]))
      (fieldsDict, fieldNames) = decoded
      self.assertEqual(len(fieldsDict), 1)

      (ranges, desc) = fieldsDict.values()[0]
      self.assertEqual(len(ranges), 1)
      self.assertSequenceEqual(ranges[0], [10, 10])
      print "decodedToStr of", ranges, "=>", l.decodedToStr(decoded)

      decoded = l.decode(numpy.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1]))
      (fieldsDict, fieldNames) = decoded
      self.assertEqual(len(fieldsDict), 1)
      (ranges, desc) = fieldsDict.values()[0]
      self.assertEqual(len(ranges), 1)
      self.assertSequenceEqual(ranges[0], [10, 10])
      print "decodedToStr of", ranges, "=>", l.decodedToStr(decoded)

    def testNonPeriodicEncoderMinMaxNotSpec(self):
      """Non-periodic encoder, min and max not specified"""
      l = AdaptiveScalarEncoder(name='scalar', n=14, w=5, minval=None, maxval=None,
                                periodic=False, forced=True)
                                
      def _verify(v, encoded, expV=None):
        if expV is None:
          expV = v
        self.assertTrue((l.encode(v) == numpy.array(encoded, dtype=defaultDtype)).all())
        self.assertTrue(abs(l.getBucketInfo(l.getBucketIndices(v))[0].value - expV) <= \
                    l.resolution/2)

      def _verifyNot(v, encoded):
        self.assertFalse((l.encode(v) == numpy.array(encoded, dtype=defaultDtype)).all())

      _verify(1, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0])
      _verify(2, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
#.........這裏部分代碼省略.........
開發者ID:ARK1988,項目名稱:nupic,代碼行數:101,代碼來源:adaptivescalar_test.py

示例11: AdaptiveScalarTest

class AdaptiveScalarTest(unittest.TestCase):
  """Tests for AdaptiveScalarEncoder"""


  def setUp(self):
    # forced: it's strongly recommended to use w>=21, in the example we force
    # skip the check for readibility
    self._l = AdaptiveScalarEncoder(name="scalar", n=14, w=5, minval=1,
                                    maxval=10, periodic=False, forced=True)

  def testMissingValues(self):
    """missing values"""
    # forced: it's strongly recommended to use w>=21, in the example we force
    # skip the check for readib.
    mv = AdaptiveScalarEncoder(name="mv", n=14, w=3, minval=1, maxval=8,
                               periodic=False, forced=True)
    empty = mv.encode(SENTINEL_VALUE_FOR_MISSING_DATA)
    self.assertEqual(empty.sum(), 0)


  def testNonPeriodicEncoderMinMaxSpec(self):
    """Non-periodic encoder, min and max specified"""

    self.assertTrue(numpy.array_equal(
      self._l.encode(1),
      numpy.array([1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                  dtype=defaultDtype)))
    self.assertTrue(numpy.array_equal(
      self._l.encode(2),
      numpy.array([0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
                  dtype=defaultDtype)))
    self.assertTrue(numpy.array_equal(
      self._l.encode(10),
      numpy.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1],
                  dtype=defaultDtype)))


  def testTopDownDecode(self):
    """Test the input description generation and topDown decoding"""
    l = self._l
    v = l.minval

    while v < l.maxval:
      output = l.encode(v)
      decoded = l.decode(output)

      (fieldsDict, _) = decoded
      self.assertEqual(len(fieldsDict), 1)

      (ranges, _) = fieldsDict.values()[0]
      self.assertEqual(len(ranges), 1)

      (rangeMin, rangeMax) = ranges[0]
      self.assertEqual(rangeMin, rangeMax)
      self.assertLess(abs(rangeMin - v), l.resolution)

      topDown = l.topDownCompute(output)[0]
      self.assertLessEqual(abs(topDown.value - v), l.resolution)

      # Test bucket support
      bucketIndices = l.getBucketIndices(v)
      topDown = l.getBucketInfo(bucketIndices)[0]
      self.assertLessEqual(abs(topDown.value - v), l.resolution / 2)
      self.assertEqual(topDown.value, l.getBucketValues()[bucketIndices[0]])
      self.assertEqual(topDown.scalar, topDown.value)
      self.assertTrue(numpy.array_equal(topDown.encoding, output))

      # Next value
      v += l.resolution / 4


  def testFillHoles(self):
    """Make sure we can fill in holes"""
    l=self._l
    decoded = l.decode(numpy.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1]))
    (fieldsDict, _) = decoded
    self.assertEqual(len(fieldsDict), 1)

    (ranges, _) = fieldsDict.values()[0]
    self.assertEqual(len(ranges), 1)
    self.assertSequenceEqual(ranges[0], [10, 10])

    decoded = l.decode(numpy.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1]))
    (fieldsDict, _) = decoded
    self.assertEqual(len(fieldsDict), 1)
    (ranges, _) = fieldsDict.values()[0]
    self.assertEqual(len(ranges), 1)
    self.assertSequenceEqual(ranges[0], [10, 10])


  def testNonPeriodicEncoderMinMaxNotSpec(self):
    """Non-periodic encoder, min and max not specified"""
    l = AdaptiveScalarEncoder(name="scalar", n=14, w=5, minval=None,
                              maxval=None, periodic=False, forced=True)

    def _verify(v, encoded, expV=None):
      if expV is None:
        expV = v

      self.assertTrue(numpy.array_equal(
#.........這裏部分代碼省略.........
開發者ID:Afey,項目名稱:nupic,代碼行數:101,代碼來源:adaptivescalar_test.py

示例12: testMissingValues

 def testMissingValues(self):
   """missing values"""
   mv = AdaptiveScalarEncoder(name='mv', n=14, w=3, minval=1, maxval=8, periodic=False)
   empty = mv.encode(SENTINEL_VALUE_FOR_MISSING_DATA)
   print "\nEncoded missing data \'None\' as %s" % empty
   self.assertEqual(empty.sum(), 0)
開發者ID:MaxDavila,項目名稱:nupic,代碼行數:6,代碼來源:adaptivescalar_test.py

示例13: setUp

 def setUp(self):
   self._l = AdaptiveScalarEncoder(name='scalar', n=14, w=5, minval=1, maxval=10,
                             periodic=False)
開發者ID:MaxDavila,項目名稱:nupic,代碼行數:3,代碼來源:adaptivescalar_test.py

示例14: DeltaEncoder

class DeltaEncoder(AdaptiveScalarEncoder):
  """
  This is an implementation of a delta encoder. The delta encoder encodes differences between
  successive scalar values instead of encoding the actual values. It returns an actual value when
  decoding and not a delta.
  """


  def __init__(self, w, minval=None, maxval=None, periodic=False, n=0, radius=0,
                resolution=0, name=None, verbosity=0, clipInput=True, forced=False):
    """[ScalarEncoder class method override]"""
    self._learningEnabled = True
    self._stateLock = False
    self.width = 0
    self.encoders = None
    self.description = []
    self.name = name
    if periodic:
      #Delta scalar encoders take non-periodic inputs only
      raise Exception('Delta encoder does not encode periodic inputs')
    assert n!=0           #An adaptive encoder can only be intialized using n

    self._adaptiveScalarEnc = AdaptiveScalarEncoder(w=w, n=n, minval=minval,
                   maxval=maxval, clipInput=True, name=name, verbosity=verbosity, forced=forced)
    self.width+=self._adaptiveScalarEnc.getWidth()
    self.n = self._adaptiveScalarEnc.n
    self._prevAbsolute = None    #how many inputs have been sent to the encoder?
    self._prevDelta = None

  def encodeIntoArray(self, input, output, learn=None):
    if not isinstance(input, numbers.Number):
      raise TypeError(
          "Expected a scalar input but got input of type {0!s}".format(type(input)))

    if learn is None:
      learn =  self._learningEnabled
    if input == SENTINEL_VALUE_FOR_MISSING_DATA:
      output[0:self.n] = 0
    else:
      #make the first delta zero so that the delta ranges are not messed up.
      if self._prevAbsoluteisNone:
        self._prevAbsolute= input
      delta = input - self._prevAbsolute
      self._adaptiveScalarEnc.encodeIntoArray(delta, output, learn)
      if not self._stateLock:
        self._prevAbsolute = input
        self._prevDelta = delta
      return output


  def setStateLock(self, lock):
    self._stateLock = lock


  def setFieldStats(self, fieldName, fieldStatistics):
    pass


  def getBucketIndices(self, input, learn=None):
    return self._adaptiveScalarEnc.getBucketIndices(input, learn)


  def getBucketInfo(self, buckets):
    return self._adaptiveScalarEnc.getBucketInfo(buckets)


  def topDownCompute(self, encoded):
    """[ScalarEncoder class method override]"""

    #Decode to delta scalar
    if self._prevAbsoluteisNone or self._prevDeltaisNone:
      return [EncoderResult(value=0, scalar=0,
                             encoding=numpy.zeros(self.n))]
    ret = self._adaptiveScalarEnc.topDownCompute(encoded)
    if self._prevAbsolute is not None:
      ret = [EncoderResult(value=ret[0].value+self._prevAbsolute,
                          scalar=ret[0].scalar+self._prevAbsolute,
                          encoding=ret[0].encoding)]
#      ret[0].value+=self._prevAbsolute
#      ret[0].scalar+=self._prevAbsolute
    return ret


  @classmethod
  def read(cls, proto):
    encoder = object.__new__(cls)
    encoder.width = proto.width
    encoder.name = proto.name or None
    encoder.n = proto.n
    encoder._adaptiveScalarEnc = (
      AdaptiveScalarEncoder.read(proto.adaptiveScalarEnc)
    )
    encoder._prevAbsolute = proto.prevAbsolute
    encoder._prevDelta = proto.prevDelta
    encoder._stateLock = proto.stateLock
    return encoder


  def write(self, proto):
    proto.width = self.width
#.........這裏部分代碼省略.........
開發者ID:runt18,項目名稱:nupic,代碼行數:101,代碼來源:delta.py


注:本文中的nupic.encoders.adaptivescalar.AdaptiveScalarEncoder類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。