本文整理匯總了Python中hyperion.model.Model.set_n_photons方法的典型用法代碼示例。如果您正苦於以下問題:Python Model.set_n_photons方法的具體用法?Python Model.set_n_photons怎麽用?Python Model.set_n_photons使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類hyperion.model.Model
的用法示例。
在下文中一共展示了Model.set_n_photons方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1:
# 需要導入模塊: from hyperion.model import Model [as 別名]
# 或者: from hyperion.model.Model import set_n_photons [as 別名]
image.set_wavelength_range(250, 0.01, 5000.)
image.set_viewing_angles(np.linspace(0., 90., 10), np.repeat(20., 10))
image.set_track_origin('detailed')
# Add multi-wavelength image for a single viewing angle
image = m.add_peeled_images(sed=False, image=True)
image.set_wavelength_range(30, 1., 1000.)
image.set_viewing_angles([30.], [20.])
image.set_image_size(200, 200)
image.set_image_limits(-dist, dist, -dist, dist)
# Add a fly-around at 500 microns
image = m.add_peeled_images(sed=False, image=True)
image.set_wavelength_range(1, 499., 501.)
image.set_viewing_angles(np.repeat(45., 36), np.linspace(5., 355., 36))
image.set_image_size(200, 200)
image.set_image_limits(-dist, dist, -dist, dist)
# Radiative Transfer
m.set_n_initial_iterations(5)
m.set_raytracing(True)
m.set_n_photons(initial=1000000, imaging=1000000,
raytracing_sources=1000000, raytracing_dust=1000000)
m.set_sample_sources_evenly(True)
m.set_mrw(True, gamma=2.)
#m.set_pda(True)
# Write out and run input.rtin file
m.write('input.rtin')
m.run('input.out', mpi=True, n_processes = 2)
示例2:
# 需要導入模塊: from hyperion.model import Model [as 別名]
# 或者: from hyperion.model.Model import set_n_photons [as 別名]
wav = np.array([0.9999, 1.0001])
fnu = np.array([1., 1.])
nu = c / (wav * 1.e-4)
s = m.add_point_source_collection()
s.position = np.array([x, y, z]).transpose()
s.velocity = np.array([vx, vy, vz]).transpose()
s.spectrum = (nu[::-1], fnu[::-1])
s.luminosity = np.repeat(1., N)
# Set up images
i = m.add_peeled_images(sed=False, image=True)
i.set_wavelength_range(30, 0.995, 1.005)
i.set_image_limits(-1., 1., -1., 1.)
i.set_image_size(100, 100)
i.set_viewing_angles(np.linspace(0., 180, 13), np.linspace(0., 360, 13))
i = m.add_binned_images(sed=False, image=True)
i.set_wavelength_range(30, 0.995, 1.005)
i.set_image_limits(-1., 1., -1., 1.)
i.set_image_size(100, 100)
i.set_viewing_bins(500, 1)
m.set_forced_first_scattering(False)
m.set_n_initial_iterations(0)
m.set_n_photons(imaging=1e6)
m.write('disk_collection.rtin', overwrite=True)
m.run('disk_collection.rtout', overwrite=True, mpi=False)
示例3: setup_model
# 需要導入模塊: from hyperion.model import Model [as 別名]
# 或者: from hyperion.model.Model import set_n_photons [as 別名]
#.........這裏部分代碼省略.........
print("ERROR: File '", file, "' cannot be found. \nERROR: This file, containing the specific energy density, has to be computed first via calling hyperion.")
exit(2)
#
# To compute total photon numbers:
#
grid_Nw = len(model.grid.gw[0,0,:])
grid_Nz = len(model.grid.gw[0,:,0])
grid_Np = len(model.grid.gw[:,0,0])
grid_N = grid_Nw * grid_Nz * grid_Np
if(cli.verbose):
print("Grid setup:")
print(" grid_Nw =",grid_Nw)
print(" grid_Nz =",grid_Nz)
print(" grid_Np =",grid_Np)
print("Radiation setup:")
print(" photons_temperature / cell =", cli.photons_temperature)
print(" photons_temperature total =", grid_N * cli.photons_temperature)
print(" photons_raytracing / cell =", cli.photons_raytracing)
print(" photons_raytracing total =", grid_N * cli.photons_raytracing)
print(" photons_imaging / cell =", cli.photons_imaging)
print(" photons_imaging total =", grid_N * cli.photons_imaging)
file = filename(cli, "")
file += ".rtin"
##
## Temperature, Images, and SEDs:
##
if(cli.mode == "temperature"):
model.set_raytracing(True)
model.set_n_photons(
initial = grid_N * cli.photons_temperature,
raytracing_sources = grid_N * cli.photons_raytracing,
raytracing_dust = grid_N * cli.photons_raytracing,
imaging = grid_N * cli.photons_imaging
)
elif(cli.mode == "images"):
model.set_n_initial_iterations(0)
model.set_raytracing(True)
# old setup: model.set_monochromatic(True, wavelengths=[0.4, 1.0, 10.0, 100.0, 500.0])
model.set_monochromatic(True, wavelengths=[0.45483, 1.2520, 26.114, 242.29])
model.set_n_photons(
raytracing_sources = grid_N * cli.photons_raytracing,
raytracing_dust = grid_N * cli.photons_raytracing,
imaging_sources = grid_N * cli.photons_imaging,
imaging_dust = grid_N * cli.photons_imaging
)
# group = 0
image1 = model.add_peeled_images(sed=False, image=True)
image1.set_image_size(501, 501)
image1.set_image_limits(-12500.0*pc, +12500.0*pc, -12500.0*pc, +12500.0*pc)
image1.set_viewing_angles([30],[0])
image1.set_uncertainties(True)
image1.set_output_bytes(8)
image1.set_track_origin('basic')
# group = 1
image2 = model.add_peeled_images(sed=False, image=True)
image2.set_image_size(501, 501)
image2.set_image_limits(-12500.0*pc, +12500.0*pc, -12500.0*pc, +12500.0*pc)
示例4:
# 需要導入模塊: from hyperion.model import Model [as 別名]
# 或者: from hyperion.model.Model import set_n_photons [as 別名]
density[in_box] = rho_0
# Set up sphere 1
in_sphere_1 = (x - 10 * au) ** 2 + (y - 15 * au) ** 2 + (z - 20 * au) ** 2 < r_1 ** 2
density[in_sphere_1] = rho_1
# Set up sphere 2
in_sphere_2 = (x - 26.666667 * au) ** 2 + (y - 31.666667 * au) ** 2 + (z - 28.333333 * au) ** 2 < r_2 ** 2
density[in_sphere_2] = rho_2
# Remove dust close to source
in_rsub = np.sqrt(x * x + y * y + z * z) < RSUB
density[in_rsub] = 0.
m.add_density_grid(density, d)
# m.set_propagation_check_frequency(1.0)
# Set up illuminating source:
s = m.add_spherical_source()
s.radius = 6.6 * rsun
s.temperature = 33000.
s.luminosity = 4 * pi * s.radius ** 2 * sigma * s.temperature ** 4
# Set up number of photons
m.set_n_photons(initial=NPHOTONS, imaging=0)
# Write out and run
m.write(os.path.join('models', 'bm2_eff_vor_temperature.rtin'), overwrite=True)
m.run(os.path.join('models', 'bm2_eff_vor_temperature.rtout'), mpi=True, overwrite=True)
示例5: setup_model
# 需要導入模塊: from hyperion.model import Model [as 別名]
# 或者: from hyperion.model.Model import set_n_photons [as 別名]
#.........這裏部分代碼省略.........
# add the dust mass into the total count
cell_mass = rho[ir, itheta, iphi] * (1/3.)*(ri[ir+1]**3 - ri[ir]**3) * (phii[iphi+1]-phii[iphi]) * -(np.cos(thetai[itheta+1])-np.cos(thetai[itheta]))
total_mass = total_mass + cell_mass
# apply gas-to-dust ratio of 100
rho_dust = rho/g2d
total_mass_dust = total_mass/MS/g2d
print('Total dust mass = %f Solar mass' % total_mass_dust)
# Insert the calculated grid and dust density profile into hyperion
m.set_spherical_polar_grid(ri, thetai, phii)
m.add_density_grid(rho_dust.T, d)
# Define the luminsoity source
source = m.add_spherical_source()
source.luminosity = (4*PI*rstar**2)*sigma*(tstar**4) # [ergs/s]
source.radius = rstar # [cm]
source.temperature = tstar # [K]
source.position = (0., 0., 0.)
print('L_center = % 5.2f L_sun' % ((4*PI*rstar**2)*sigma*(tstar**4)/LS))
# radiative transfer settigs
m.set_raytracing(True)
# determine the number of photons for imaging
# the case of monochromatic
if mono_wave != None:
if (type(mono_wave) == int) or (type(mono_wave) == float) or (type(mono_wave) == str):
mono_wave = float(mono_wave)
mono_wave = [mono_wave]
# Monochromatic radiative transfer setting
m.set_monochromatic(True, wavelengths=mono_wave)
m.set_n_photons(initial=mc_photons, imaging_sources=im_photon,
imaging_dust=im_photon, raytracing_sources=im_photon,
raytracing_dust=im_photon)
# regular SED
else:
m.set_n_photons(initial=mc_photons, imaging=im_photon * wav_num,
raytracing_sources=im_photon,
raytracing_dust=im_photon)
# number of iteration to compute dust specific energy (temperature)
m.set_n_initial_iterations(20)
m.set_convergence(True, percentile=dict_params['percentile'],
absolute=dict_params['absolute'],
relative=dict_params['relative'])
m.set_mrw(True) # Gamma = 1 by default
# Setting up images and SEDs
if not image_only:
# SED setting
# Infinite aperture
syn_inf = m.add_peeled_images(image=False)
# use the index of wavelength array used by the monochromatic radiative transfer
if mono_wave == None:
syn_inf.set_wavelength_range(wav_num, wav_min, wav_max)
syn_inf.set_viewing_angles([dict_params['view_angle']], [0.0])
syn_inf.set_uncertainties(True)
syn_inf.set_output_bytes(8)
# aperture
# 7.2 in 10 um scaled by lambda / 10
# flatten beyond 20 um
# default aperture (should always specify a set of apertures)
# assign wl_aper and aper from dictionary of aperture
示例6: Model
# 需要導入模塊: from hyperion.model import Model [as 別名]
# 或者: from hyperion.model.Model import set_n_photons [as 別名]
from dust import setup_dust
if not os.path.exists("models"):
os.mkdir("models")
if not os.path.exists("models/indiv"):
os.mkdir("models/indiv")
seed = -69102
for model_name in ["sky_updarm_gaussian_hole_morepah"]:
for spectral_type in spectral_types:
print "Processing %s..." % spectral_type
m = Model("models/indiv/energy_%s_%s" % (model_name, spectral_type.replace(" ", "_")))
seed += 1
m.set_seed(seed)
m = setup_sources(m, model_name, sky_model[model_name][0], spectral_type=spectral_type)
m = setup_dust(m, **sky_model[model_name][1])
m.set_n_initial_iterations(3)
m.set_n_photons(initial=100000000, imaging=0)
m.set_enforce_energy_range(False)
m.write()
示例7: setup_model
# 需要導入模塊: from hyperion.model import Model [as 別名]
# 或者: from hyperion.model.Model import set_n_photons [as 別名]
#.........這裏部分代碼省略.........
nlam = len(lam)
# Create camera wavelength points
n12 = 70.0
n23 = 70.0
n34 = 70.0
n45 = 50.0
n56 = 50.0
lam12 = lambda1 * (lambda2/lambda1)**(np.arange(n12)/n12)
lam23 = lambda2 * (lambda3/lambda2)**(np.arange(n23)/n23)
lam34 = lambda3 * (lambda4/lambda3)**(np.arange(n34)/n34)
lam45 = lambda4 * (lambda5/lambda4)**(np.arange(n45)/n45)
lam56 = lambda5 * (lambda6/lambda5)**(np.arange(n56+1)/n56)
lam_cam = np.concatenate([lam12,lam23,lam34,lam45,lam56])
n_lam_cam = len(lam_cam)
# Radiative transfer setting
# number of photons for temp and image
lam_list = lam.tolist()
# print lam_list
m.set_raytracing(True)
# option of using more photons for imaging
if better_im == False:
im_photon = 1e6
else:
im_photon = 5e7
if mono == True:
# Monechromatic radiative transfer setting
m.set_monochromatic(True, wavelengths=lam_list)
m.set_n_photons(initial=1000000, imaging_sources=im_photon, imaging_dust=im_photon,raytracing_sources=1000000, raytracing_dust=1000000)
else:
# regular wavelength grid setting
m.set_n_photons(initial=1000000, imaging=im_photon,raytracing_sources=1000000, raytracing_dust=1000000)
# number of iteration to compute dust specific energy (temperature)
m.set_n_initial_iterations(20)
# m.set_convergence(True, percentile=95., absolute=1.5, relative=1.02)
m.set_convergence(True, percentile=dict_params['percentile'], absolute=dict_params['absolute'], relative=dict_params['relative'])
m.set_mrw(True) # Gamma = 1 by default
# m.set_forced_first_scattering(forced_first_scattering=True)
# Setting up images and SEDs
# SED setting
# Infinite aperture
syn_inf = m.add_peeled_images(image=False)
# use the index of wavelength array used by the monochromatic radiative transfer
if mono == False:
syn_inf.set_wavelength_range(1400, 2.0, 1400.0)
syn_inf.set_viewing_angles([dict_params['view_angle']], [0.0])
syn_inf.set_uncertainties(True)
syn_inf.set_output_bytes(8)
# aperture
# 7.2 in 10 um scaled by lambda / 10
# flatten beyond 20 um
# default aperture
if aperture == None:
aperture = {'wave': [3.6, 4.5, 5.8, 8.0, 8.5, 9, 9.7, 10, 10.5, 11, 16, 20, 24, 35, 70, 100, 160, 250, 350, 500, 1300],\
'aperture': [7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 20.4, 20.4, 20.4, 20.4, 24.5, 24.5, 24.5, 24.5, 24.5, 24.5, 101]}
# assign wl_aper and aper from dictionary of aperture
wl_aper = aperture['wave']
aper = aperture['aperture']
示例8: setup_model
# 需要導入模塊: from hyperion.model import Model [as 別名]
# 或者: from hyperion.model.Model import set_n_photons [as 別名]
#.........這裏部分代碼省略.........
# else:
# mu_o_dum = roots[imu]
# if mu_o_dum == -0.5:
# print 'Problem with cubic solving, roots are: ', roots
# mu_o = mu_o_dum.real
# rho_env[ir,itheta,iphi] = M_env_dot/(4*PI*(G*mstar*rcen**3)**0.5)*(rc[ir]/rcen)**(-3./2)*(1+mu/mu_o)**(-0.5)*(mu/mu_o+2*mu_o**2*rcen/rc[ir])**(-1)
# # Disk profile
# if ((w >= R_disk_min) and (w <= R_disk_max)) == True:
# h = ((w/(100*AU))**beta)*h100
# rho_disk[ir,itheta,iphi] = rho_0*(1-np.sqrt(rstar/w))*(rstar/w)**(beta+1)*np.exp(-0.5*(z/h)**2)
# # Combine envelope and disk
# rho[ir,itheta,iphi] = rho_disk[ir,itheta,iphi] + rho_env[ir,itheta,iphi]
else:
rho[ir,itheta,iphi] = 1e-30
rho_env = rho_env + 1e-40
rho_disk = rho_disk + 1e-40
rho = rho + 1e-40
else:
for ir in range(0,len(rc)):
for itheta in range(0,len(thetac)):
for iphi in range(0,len(phic)):
# Envelope profile
w = abs(rc[ir]*np.cos(thetac[itheta]))
z = rc[ir]*np.sin(thetac[itheta])
z_cav = c*abs(w)**1.5
z_cav_wall = c*abs(w-wall)**1.5
if z_cav == 0:
z_cav = R_env_max
if abs(z) > abs(z_cav):
# rho_env[ir,itheta,iphi] = rho_cav
# Modification for using density gradient in the cavity
if rc[ir] <= 20*AU:
rho_env[ir,itheta,iphi] = rho_cav_center*((rc[ir]/AU)**2)
else:
rho_env[ir,itheta,iphi] = rho_cav_center*discont*(20*AU/rc[ir])**2
i += 1
elif (abs(z) > abs(z_cav_wall)) and (abs(z) < abs(z_cav)):
rho_env[ir,itheta,iphi] = rho_wall
else:
j += 1
mu = abs(np.cos(thetac[itheta]))
mu_o = np.abs(fsolve(func,[0.5,0.5,0.5],args=(rc[ir],rcen,mu))[0])
rho_env[ir,itheta,iphi] = M_env_dot/(4*PI*(G*mstar*rcen**3)**0.5)*(rc[ir]/rcen)**(-3./2)*(1+mu/mu_o)**(-0.5)*(mu/mu_o+2*mu_o**2*rcen/rc[ir])**(-1)
# Disk profile
if ((w >= R_disk_min) and (w <= R_disk_max)) == True:
h = ((w/(100*AU))**beta)*h100
rho_disk[ir,itheta,iphi] = rho_0*(1-np.sqrt(rstar/w))*(rstar/w)**(beta+1)*np.exp(-0.5*(z/h)**2)
# Combine envelope and disk
rho[ir,itheta,iphi] = rho_disk[ir,itheta,iphi] + rho_env[ir,itheta,iphi]
rho_env = rho_env + 1e-40
rho_disk = rho_disk + 1e-40
rho = rho + 1e-40
# Insert the calculated grid and dust density profile into hyperion
m.set_spherical_polar_grid(ri, thetai, phii)
m.add_density_grid(rho.T, outdir+'oh5.hdf5') # numpy read the array in reverse order
# Define the luminsoity source
source = m.add_spherical_source()
source.luminosity = (4*PI*rstar**2)*sigma*(tstar**4) # [ergs/s]
source.radius = rstar # [cm]
source.temperature = tstar # [K]
source.position = (0., 0., 0.)
print 'L_center = % 5.2f L_sun' % ((4*PI*rstar**2)*sigma*(tstar**4)/LS)
# Setting up images and SEDs
image = m.add_peeled_images()
image.set_wavelength_range(300, 2.0, 670.0)
# pixel number
image.set_image_size(300, 300)
image.set_image_limits(-R_env_max, R_env_max, -R_env_max, R_env_max)
image.set_viewing_angles([82.0], [0.0])
image.set_uncertainties(True)
# output as 64-bit
image.set_output_bytes(8)
# Radiative transfer setting
# number of photons for temp and image
m.set_raytracing(True)
m.set_n_photons(initial=1000000, imaging=1000000, raytracing_sources=1000000, raytracing_dust=1000000)
# number of iteration to compute dust specific energy (temperature)
m.set_n_initial_iterations(5)
m.set_convergence(True, percentile=99., absolute=1.5, relative=1.02)
m.set_mrw(True) # Gamma = 1 by default
# Output setting
# Density
m.conf.output.output_density = 'last'
# Density difference (shows where dust was destroyed)
m.conf.output.output_density_diff = 'none'
# Energy absorbed (using pathlengths)
m.conf.output.output_specific_energy = 'last'
# Number of unique photons that passed through the cell
m.conf.output.output_n_photons = 'last'
m.write(outdir+'old_setup2.rtin')
示例9: run_thermal_hyperion
# 需要導入模塊: from hyperion.model import Model [as 別名]
# 或者: from hyperion.model.Model import set_n_photons [as 別名]
def run_thermal_hyperion(self, nphot=1e6, mrw=False, pda=False, \
niterations=20, percentile=99., absolute=2.0, relative=1.02, \
max_interactions=1e8, mpi=False, nprocesses=None):
d = []
for i in range(len(self.grid.dust)):
d.append(IsotropicDust( \
self.grid.dust[i].nu[::-1].astype(numpy.float64), \
self.grid.dust[i].albedo[::-1].astype(numpy.float64), \
self.grid.dust[i].kext[::-1].astype(numpy.float64)))
m = HypModel()
if (self.grid.coordsystem == "cartesian"):
m.set_cartesian_grid(self.grid.w1*AU, self.grid.w2*AU, \
self.grid.w3*AU)
elif (self.grid.coordsystem == "cylindrical"):
m.set_cylindrical_polar_grid(self.grid.w1*AU, self.grid.w3*AU, \
self.grid.w2)
elif (self.grid.coordsystem == "spherical"):
m.set_spherical_polar_grid(self.grid.w1*AU, self.grid.w2, \
self.grid.w3)
for i in range(len(self.grid.density)):
if (self.grid.coordsystem == "cartesian"):
m.add_density_grid(numpy.transpose(self.grid.density[i], \
axes=(2,1,0)), d[i])
if (self.grid.coordsystem == "cylindrical"):
m.add_density_grid(numpy.transpose(self.grid.density[i], \
axes=(1,2,0)), d[i])
if (self.grid.coordsystem == "spherical"):
m.add_density_grid(numpy.transpose(self.grid.density[i], \
axes=(2,1,0)), d[i])
sources = []
for i in range(len(self.grid.stars)):
sources.append(m.add_spherical_source())
sources[i].luminosity = self.grid.stars[i].luminosity * L_sun
sources[i].radius = self.grid.stars[i].radius * R_sun
sources[i].temperature = self.grid.stars[i].temperature
m.set_mrw(mrw)
m.set_pda(pda)
m.set_max_interactions(max_interactions)
m.set_n_initial_iterations(niterations)
m.set_n_photons(initial=nphot, imaging=0)
m.set_convergence(True, percentile=percentile, absolute=absolute, \
relative=relative)
m.write("temp.rtin")
m.run("temp.rtout", mpi=mpi, n_processes=nprocesses)
n = ModelOutput("temp.rtout")
grid = n.get_quantities()
self.grid.temperature = []
temperature = grid.quantities['temperature']
for i in range(len(temperature)):
if (self.grid.coordsystem == "cartesian"):
self.grid.temperature.append(numpy.transpose(temperature[i], \
axes=(2,1,0)))
if (self.grid.coordsystem == "cylindrical"):
self.grid.temperature.append(numpy.transpose(temperature[i], \
axes=(2,0,1)))
if (self.grid.coordsystem == "spherical"):
self.grid.temperature.append(numpy.transpose(temperature[i], \
axes=(2,1,0)))
os.system("rm temp.rtin temp.rtout")
示例10:
# 需要導入模塊: from hyperion.model import Model [as 別名]
# 或者: from hyperion.model.Model import set_n_photons [as 別名]
# Add density grid with constant density and add a higher density cube inside to
# cause a shadow.
density = np.ones(m.grid.shape) * 1e-21
density[26:38, 26:38, 26:38] = 1.e-18
m.add_density_grid(density, 'kmh_lite.hdf5')
# Add a point source in the center
s = m.add_point_source()
s.position = (0.4 * pc, 0., 0.)
s.luminosity = 1000 * lsun
s.temperature = 6000.
# Add multi-wavelength image for a single viewing angle
image = m.add_peeled_images(sed=False, image=True)
image.set_wavelength_range(1, 190., 210.)
image.set_viewing_angles(np.repeat(45., 36), np.linspace(5., 355., 36))
image.set_image_size(400, 400)
image.set_image_limits(-1.5 * pc, 1.5 * pc, -1.5 * pc, 1.5 * pc)
# Set runtime parameters. We turn off scattering for the imaging since it is not
# important at these wavelengths.
m.set_n_initial_iterations(5)
m.set_raytracing(True)
m.set_n_photons(initial=4e6, imaging=0,
raytracing_sources=1, raytracing_dust=1e7)
# Write out input file
m.write('flyaround_cube.rtin')
m.run('flyaround_cube.rtout', mpi=True)
示例11: SphericalDust
# 需要導入模塊: from hyperion.model import Model [as 別名]
# 或者: from hyperion.model.Model import set_n_photons [as 別名]
y = np.linspace(-5 * pc, 5 * pc, 100)
z = np.hstack([np.linspace(-5 * pc, -2 * pc, 100), 5 * pc])
m.set_cartesian_grid(x, y, z)
# Grain Properties:
d = SphericalDust('integrated_hg_scattering.hdf5')
chi_v = d.optical_properties.interp_chi_wav(0.55)
# Determine density in slab
rho0 = tau_v / (3 * pc * chi_v)
# Set up density grid
density = np.ones(m.grid.shape) * rho0
density[-1,:,:] = 0.
m.add_density_grid(density, d)
# Set up illuminating source:
s = m.add_point_source()
s.position = (0., 0., 4 * pc)
s.temperature = 10000.0
s.luminosity = 3.839e38
# Set up number of photons
m.set_n_photons(initial=1e9, imaging=0)
# Write out and run
m.write('bm1_slab_eff_tau{0:05.2f}_temperature.rtin'.format(tau_v), overwrite=True)
示例12:
# 需要導入模塊: from hyperion.model import Model [as 別名]
# 或者: from hyperion.model.Model import set_n_photons [as 別名]
s.luminosity = 1000 * lsun
s.temperature = 6000.
# Add 10 SEDs for different viewing angles
image = m.add_peeled_images(sed=True, image=False)
image.set_wavelength_range(250, 0.01, 5000.)
image.set_viewing_angles(np.linspace(0., 90., 10), np.repeat(20., 10))
image.set_track_origin('basic')
# Add multi-wavelength image for a single viewing angle
image = m.add_peeled_images(sed=False, image=True)
image.set_wavelength_range(30, 1., 1000.)
image.set_viewing_angles([30.], [20.])
image.set_image_size(200, 200)
image.set_image_limits(-1.5 * pc, 1.5 * pc, -1.5 * pc, 1.5 * pc)
# Add a fly-around at 500 microns
image = m.add_peeled_images(sed=False, image=True)
image.set_wavelength_range(1, 499., 501.)
image.set_viewing_angles(np.repeat(45., 36), np.linspace(5., 355., 36))
image.set_image_size(200, 200)
image.set_image_limits(-1.5 * pc, 1.5 * pc, -1.5 * pc, 1.5 * pc)
# Set runtime parameters
m.set_n_initial_iterations(5)
m.set_raytracing(True)
m.set_n_photons(initial=1e6, imaging=1e7,
raytracing_sources=0, raytracing_dust=1e6)
# Write out input file
m.write('tutorial_model_noray_sour.rtin')
示例13: setup_model_shell
# 需要導入模塊: from hyperion.model import Model [as 別名]
# 或者: from hyperion.model.Model import set_n_photons [as 別名]
#.........這裏部分代碼省略.........
rho[ir,itheta,iphi] = rho_env[ir,itheta,iphi]
else:
rho[ir,itheta,iphi] = 1e-25
rho_env = rho_env + 1e-40
rho = rho + 1e-40
# Call function to plot the density
plot_density(rho, rc, thetac,'/Users/yaolun/bhr71/hyperion/', plotname='shell')
# Insert the calculated grid and dust density profile into hyperion
m.set_spherical_polar_grid(ri, thetai, phii)
m.add_density_grid(rho.T, outdir+'oh5.hdf5') # numpy read the array in reverse order
# Define the luminsoity source
source = m.add_spherical_source()
source.luminosity = (4*PI*rstar**2)*sigma*(tstar**4) # [ergs/s]
source.radius = rstar # [cm]
source.temperature = tstar # [K]
source.position = (0., 0., 0.)
print 'L_center = % 5.2f L_sun' % ((4*PI*rstar**2)*sigma*(tstar**4)/LS)
# Setting up the wavelength for monochromatic radiative transfer
lambda0 = 0.1
lambda1 = 2.0
lambda2 = 50.0
lambda3 = 95.0
lambda4 = 200.0
lambda5 = 314.0
lambda6 = 670.0
n01 = 10.0
n12 = 20.0
n23 = (lambda3-lambda2)/0.02
n34 = (lambda4-lambda3)/0.03
n45 = (lambda5-lambda4)/0.1
n56 = (lambda6-lambda5)/0.1
lam01 = lambda0 * (lambda1/lambda0)**(np.arange(n01)/n01)
lam12 = lambda1 * (lambda2/lambda1)**(np.arange(n12)/n12)
lam23 = lambda2 * (lambda3/lambda2)**(np.arange(n23)/n23)
lam34 = lambda3 * (lambda4/lambda3)**(np.arange(n34)/n34)
lam45 = lambda4 * (lambda5/lambda4)**(np.arange(n45)/n45)
lam56 = lambda5 * (lambda6/lambda5)**(np.arange(n56+1)/n56)
lam = np.concatenate([lam01,lam12,lam23,lam34,lam45,lam56])
nlam = len(lam)
# Create camera wavelength points
n12 = 70.0
n23 = 70.0
n34 = 70.0
n45 = 50.0
n56 = 50.0
lam12 = lambda1 * (lambda2/lambda1)**(np.arange(n12)/n12)
lam23 = lambda2 * (lambda3/lambda2)**(np.arange(n23)/n23)
lam34 = lambda3 * (lambda4/lambda3)**(np.arange(n34)/n34)
lam45 = lambda4 * (lambda5/lambda4)**(np.arange(n45)/n45)
lam56 = lambda5 * (lambda6/lambda5)**(np.arange(n56+1)/n56)
lam_cam = np.concatenate([lam12,lam23,lam34,lam45,lam56])
n_lam_cam = len(lam_cam)
# Radiative transfer setting
# number of photons for temp and image
m.set_raytracing(True)
m.set_monochromatic(True, wavelengths=[3.6, 4.5, 5.8, 8.0, 24, 70, 100, 160, 250, 350, 500])
m.set_n_photons(initial=1000000, imaging_sources=1000000, imaging_dust=1000000,raytracing_sources=1000000, raytracing_dust=1000000)
# imaging=100000, raytracing_sources=100000, raytracing_dust=100000
# number of iteration to compute dust specific energy (temperature)
m.set_n_initial_iterations(5)
m.set_convergence(True, percentile=99., absolute=1.5, relative=1.02)
m.set_mrw(True) # Gamma = 1 by default
# m.set_forced_first_scattering(forced_first_scattering=True)
# Setting up images and SEDs
image = m.add_peeled_images()
# image.set_wavelength_range(300, 2.0, 670.0)
# use the index of wavelength array used by the monochromatic radiative transfer
image.set_wavelength_index_range(2,12)
# pixel number
image.set_image_size(300, 300)
image.set_image_limits(-R_env_max, R_env_max, -R_env_max, R_env_max)
image.set_viewing_angles([82.0], [0.0])
image.set_uncertainties(True)
# output as 64-bit
image.set_output_bytes(8)
# Output setting
# Density
m.conf.output.output_density = 'last'
# Density difference (shows where dust was destroyed)
m.conf.output.output_density_diff = 'none'
# Energy absorbed (using pathlengths)
m.conf.output.output_specific_energy = 'last'
# Number of unique photons that passed through the cell
m.conf.output.output_n_photons = 'last'
m.write(outdir+outname+'.rtin')
示例14:
# 需要導入模塊: from hyperion.model import Model [as 別名]
# 或者: from hyperion.model.Model import set_n_photons [as 別名]
m.add_density_grid(density, d)
# Set up illuminating source:
wav, fnu = np.loadtxt('data/BB_T10000_L100000.dat', usecols=[0,1], unpack=True)
nu = c / (wav * 1.e-4)
nu = nu[::-1]
fnu = fnu[::-1]
s = m.add_point_source()
s.position = (0., 0., 4 * pc)
s.luminosity = 3.839e38
s.spectrum = (nu, fnu)
# Set up number of photons
m.set_n_photons(initial=settings['temperature']['n_photons'], imaging=0)
m.conf.output.output_specific_energy = 'all'
# The settings below converge after 4 iterations, so we force 10 iterations
# instead to be safe since this run doesn't take too long.
# m.set_n_initial_iterations(NITER_MAX)
# m.set_convergence(True, percentile=99.9, absolute=2., relative=1.01)
m.set_n_initial_iterations(settings['temperature']['n_iter'])
# Don't copy input into output
m.set_copy_input(False)
# Write out and run
model_name = 'models/hyper_slab_eff_t{0}_temperature'.format(TAU_LABEL[tau_v])
m.write(model_name + '.rtin', overwrite=True, copy=False)
示例15:
# 需要導入模塊: from hyperion.model import Model [as 別名]
# 或者: from hyperion.model.Model import set_n_photons [as 別名]
s.luminosity = 1000 * lsun
s.temperature = 6000.
# Add 10 SEDs for different viewing angles
image = m.add_peeled_images(sed=True, image=False)
image.set_wavelength_range(250, 0.01, 5000.)
image.set_viewing_angles(np.linspace(0., 90., 10), np.repeat(20., 10))
image.set_track_origin('basic')
# Add multi-wavelength image for a single viewing angle
image = m.add_peeled_images(sed=False, image=True)
image.set_wavelength_range(30, 1., 1000.)
image.set_viewing_angles([30.], [20.])
image.set_image_size(200, 200)
image.set_image_limits(-1.5 * pc, 1.5 * pc, -1.5 * pc, 1.5 * pc)
# Add a fly-around at 500 microns
image = m.add_peeled_images(sed=False, image=True)
image.set_wavelength_range(1, 499., 501.)
image.set_viewing_angles(np.repeat(45., 36), np.linspace(5., 355., 36))
image.set_image_size(200, 200)
image.set_image_limits(-1.5 * pc, 1.5 * pc, -1.5 * pc, 1.5 * pc)
# Set runtime parameters
m.set_n_initial_iterations(5)
m.set_raytracing(True)
m.set_n_photons(initial=1e5, imaging=1e6,
raytracing_sources=1e5, raytracing_dust=1e5)
# Write out input file
m.write('tutorial_model.rtin')