當前位置: 首頁>>代碼示例>>Python>>正文


Python Model.set_n_photons方法代碼示例

本文整理匯總了Python中hyperion.model.Model.set_n_photons方法的典型用法代碼示例。如果您正苦於以下問題:Python Model.set_n_photons方法的具體用法?Python Model.set_n_photons怎麽用?Python Model.set_n_photons使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在hyperion.model.Model的用法示例。


在下文中一共展示了Model.set_n_photons方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1:

# 需要導入模塊: from hyperion.model import Model [as 別名]
# 或者: from hyperion.model.Model import set_n_photons [as 別名]
image.set_wavelength_range(250, 0.01, 5000.)
image.set_viewing_angles(np.linspace(0., 90., 10), np.repeat(20., 10))
image.set_track_origin('detailed')

# Add multi-wavelength image for a single viewing angle
image = m.add_peeled_images(sed=False, image=True)
image.set_wavelength_range(30, 1., 1000.)
image.set_viewing_angles([30.], [20.])
image.set_image_size(200, 200)
image.set_image_limits(-dist, dist, -dist, dist)

# Add a fly-around at 500 microns
image = m.add_peeled_images(sed=False, image=True)
image.set_wavelength_range(1, 499., 501.)
image.set_viewing_angles(np.repeat(45., 36), np.linspace(5., 355., 36))
image.set_image_size(200, 200)
image.set_image_limits(-dist, dist, -dist, dist)

# Radiative Transfer
m.set_n_initial_iterations(5)
m.set_raytracing(True)
m.set_n_photons(initial=1000000, imaging=1000000,
                raytracing_sources=1000000, raytracing_dust=1000000)
m.set_sample_sources_evenly(True)
m.set_mrw(True, gamma=2.)
#m.set_pda(True)

# Write out and run input.rtin file
m.write('input.rtin')
m.run('input.out', mpi=True, n_processes = 2)
開發者ID:koepferl,項目名稱:tutorial_arbitrary,代碼行數:32,代碼來源:input.py

示例2:

# 需要導入模塊: from hyperion.model import Model [as 別名]
# 或者: from hyperion.model.Model import set_n_photons [as 別名]
wav = np.array([0.9999, 1.0001])
fnu = np.array([1., 1.])
nu = c / (wav * 1.e-4)

s = m.add_point_source_collection()
s.position = np.array([x, y, z]).transpose()
s.velocity = np.array([vx, vy, vz]).transpose()
s.spectrum = (nu[::-1], fnu[::-1])
s.luminosity = np.repeat(1., N)

# Set up images

i = m.add_peeled_images(sed=False, image=True)
i.set_wavelength_range(30, 0.995, 1.005)
i.set_image_limits(-1., 1., -1., 1.)
i.set_image_size(100, 100)
i.set_viewing_angles(np.linspace(0., 180, 13), np.linspace(0., 360, 13))

i = m.add_binned_images(sed=False, image=True)
i.set_wavelength_range(30, 0.995, 1.005)
i.set_image_limits(-1., 1., -1., 1.)
i.set_image_size(100, 100)
i.set_viewing_bins(500, 1)

m.set_forced_first_scattering(False)

m.set_n_initial_iterations(0)
m.set_n_photons(imaging=1e6)

m.write('disk_collection.rtin', overwrite=True)
m.run('disk_collection.rtout', overwrite=True, mpi=False)
開發者ID:hyperion-rt,項目名稱:hyperion-test-models,代碼行數:33,代碼來源:setup_collection.py

示例3: setup_model

# 需要導入模塊: from hyperion.model import Model [as 別名]
# 或者: from hyperion.model.Model import set_n_photons [as 別名]

#.........這裏部分代碼省略.........
            print("ERROR: File '", file, "' cannot be found. \nERROR: This file, containing the specific energy density, has to be computed first via calling hyperion.")
            exit(2)
        
		#
		# To compute total photon numbers:
		#
        grid_Nw = len(model.grid.gw[0,0,:])
        grid_Nz = len(model.grid.gw[0,:,0])
        grid_Np = len(model.grid.gw[:,0,0])
        grid_N = grid_Nw * grid_Nz * grid_Np
        if(cli.verbose):
            print("Grid setup:")
            print(" grid_Nw =",grid_Nw)
            print(" grid_Nz =",grid_Nz)
            print(" grid_Np =",grid_Np)
            print("Radiation setup:")
            print(" photons_temperature / cell =", cli.photons_temperature)
            print(" photons_temperature total  =", grid_N * cli.photons_temperature)
            print(" photons_raytracing / cell  =", cli.photons_raytracing)
            print(" photons_raytracing total   =", grid_N * cli.photons_raytracing)
            print(" photons_imaging / cell     =", cli.photons_imaging)
            print(" photons_imaging total      =", grid_N * cli.photons_imaging)
        
        file = filename(cli, "")
        file += ".rtin"


    ##
    ## Temperature, Images, and SEDs:
    ##
    if(cli.mode == "temperature"):
    
        model.set_raytracing(True)
        model.set_n_photons(
            initial            = grid_N * cli.photons_temperature,
            raytracing_sources = grid_N * cli.photons_raytracing,
            raytracing_dust    = grid_N * cli.photons_raytracing,
            imaging            = grid_N * cli.photons_imaging
        )
        
    elif(cli.mode == "images"):
        
        model.set_n_initial_iterations(0)
        model.set_raytracing(True)
        # old setup: model.set_monochromatic(True, wavelengths=[0.4, 1.0, 10.0, 100.0, 500.0])
        model.set_monochromatic(True, wavelengths=[0.45483, 1.2520, 26.114, 242.29])
        model.set_n_photons(
            raytracing_sources = grid_N * cli.photons_raytracing,
            raytracing_dust    = grid_N * cli.photons_raytracing,
            imaging_sources    = grid_N * cli.photons_imaging,
            imaging_dust       = grid_N * cli.photons_imaging
        )
    
        # group = 0
        image1 = model.add_peeled_images(sed=False, image=True)
        image1.set_image_size(501, 501)
        image1.set_image_limits(-12500.0*pc, +12500.0*pc, -12500.0*pc, +12500.0*pc)
        image1.set_viewing_angles([30],[0])
        image1.set_uncertainties(True)
        image1.set_output_bytes(8)
        image1.set_track_origin('basic')
    
        # group = 1
        image2 = model.add_peeled_images(sed=False, image=True)
        image2.set_image_size(501, 501)
        image2.set_image_limits(-12500.0*pc, +12500.0*pc, -12500.0*pc, +12500.0*pc)
開發者ID:hyperion-rt,項目名稱:hyperion-trust,代碼行數:70,代碼來源:setup_model.py

示例4:

# 需要導入模塊: from hyperion.model import Model [as 別名]
# 或者: from hyperion.model.Model import set_n_photons [as 別名]
density[in_box] = rho_0

# Set up sphere 1
in_sphere_1 = (x - 10 * au) ** 2 + (y - 15 * au) ** 2 + (z - 20 * au) ** 2 < r_1 ** 2
density[in_sphere_1] = rho_1

# Set up sphere 2
in_sphere_2 = (x - 26.666667 * au) ** 2 + (y - 31.666667 * au) ** 2 + (z - 28.333333 * au) ** 2 < r_2 ** 2
density[in_sphere_2] = rho_2

# Remove dust close to source
in_rsub = np.sqrt(x * x + y * y + z * z) < RSUB
density[in_rsub] = 0.

m.add_density_grid(density, d)

# m.set_propagation_check_frequency(1.0)

# Set up illuminating source:
s = m.add_spherical_source()
s.radius = 6.6 * rsun
s.temperature = 33000.
s.luminosity = 4 * pi * s.radius ** 2 * sigma * s.temperature ** 4

# Set up number of photons
m.set_n_photons(initial=NPHOTONS, imaging=0)

# Write out and run
m.write(os.path.join('models', 'bm2_eff_vor_temperature.rtin'), overwrite=True)
m.run(os.path.join('models', 'bm2_eff_vor_temperature.rtout'), mpi=True, overwrite=True)
開發者ID:hyperion-rt,項目名稱:hyperion-trust,代碼行數:32,代碼來源:setup_effgrain_temperature_vor.py

示例5: setup_model

# 需要導入模塊: from hyperion.model import Model [as 別名]
# 或者: from hyperion.model.Model import set_n_photons [as 別名]

#.........這裏部分代碼省略.........

                    # add the dust mass into the total count
                    cell_mass = rho[ir, itheta, iphi] * (1/3.)*(ri[ir+1]**3 - ri[ir]**3) * (phii[iphi+1]-phii[iphi]) * -(np.cos(thetai[itheta+1])-np.cos(thetai[itheta]))
                    total_mass = total_mass + cell_mass
    # apply gas-to-dust ratio of 100
    rho_dust = rho/g2d
    total_mass_dust = total_mass/MS/g2d
    print('Total dust mass = %f Solar mass' % total_mass_dust)

    # Insert the calculated grid and dust density profile into hyperion
    m.set_spherical_polar_grid(ri, thetai, phii)
    m.add_density_grid(rho_dust.T, d)

    # Define the luminsoity source
    source = m.add_spherical_source()
    source.luminosity = (4*PI*rstar**2)*sigma*(tstar**4)  # [ergs/s]
    source.radius = rstar  # [cm]
    source.temperature = tstar  # [K]
    source.position = (0., 0., 0.)
    print('L_center =  % 5.2f L_sun' % ((4*PI*rstar**2)*sigma*(tstar**4)/LS))

    # radiative transfer settigs
    m.set_raytracing(True)

    # determine the number of photons for imaging
    # the case of monochromatic
    if mono_wave != None:
        if (type(mono_wave) == int) or (type(mono_wave) == float) or (type(mono_wave) == str):
            mono_wave = float(mono_wave)
            mono_wave = [mono_wave]

        # Monochromatic radiative transfer setting
        m.set_monochromatic(True, wavelengths=mono_wave)
        m.set_n_photons(initial=mc_photons, imaging_sources=im_photon,
                        imaging_dust=im_photon, raytracing_sources=im_photon,
                        raytracing_dust=im_photon)
    # regular SED
    else:
        m.set_n_photons(initial=mc_photons, imaging=im_photon * wav_num,
                        raytracing_sources=im_photon,
                        raytracing_dust=im_photon)
    # number of iteration to compute dust specific energy (temperature)
    m.set_n_initial_iterations(20)
    m.set_convergence(True, percentile=dict_params['percentile'],
                            absolute=dict_params['absolute'],
                            relative=dict_params['relative'])
    m.set_mrw(True)   # Gamma = 1 by default

    # Setting up images and SEDs
    if not image_only:
        # SED setting
        # Infinite aperture
        syn_inf = m.add_peeled_images(image=False)
        # use the index of wavelength array used by the monochromatic radiative transfer
        if mono_wave == None:
            syn_inf.set_wavelength_range(wav_num, wav_min, wav_max)
        syn_inf.set_viewing_angles([dict_params['view_angle']], [0.0])
        syn_inf.set_uncertainties(True)
        syn_inf.set_output_bytes(8)

        # aperture
        # 7.2 in 10 um scaled by lambda / 10
        # flatten beyond 20 um
        # default aperture (should always specify a set of apertures)

        # assign wl_aper and aper from dictionary of aperture
開發者ID:yaolun,項目名稱:misc,代碼行數:70,代碼來源:setup_model_v2.py

示例6: Model

# 需要導入模塊: from hyperion.model import Model [as 別名]
# 或者: from hyperion.model.Model import set_n_photons [as 別名]
from dust import setup_dust

if not os.path.exists("models"):
    os.mkdir("models")

if not os.path.exists("models/indiv"):
    os.mkdir("models/indiv")

seed = -69102

for model_name in ["sky_updarm_gaussian_hole_morepah"]:

    for spectral_type in spectral_types:

        print "Processing %s..." % spectral_type

        m = Model("models/indiv/energy_%s_%s" % (model_name, spectral_type.replace(" ", "_")))

        seed += 1
        m.set_seed(seed)

        m = setup_sources(m, model_name, sky_model[model_name][0], spectral_type=spectral_type)
        m = setup_dust(m, **sky_model[model_name][1])

        m.set_n_initial_iterations(3)
        m.set_n_photons(initial=100000000, imaging=0)

        m.set_enforce_energy_range(False)

        m.write()
開發者ID:hyperion-rt,項目名稱:paper-galaxy-rt-model,代碼行數:32,代碼來源:setup_indiv.py

示例7: setup_model

# 需要導入模塊: from hyperion.model import Model [as 別名]
# 或者: from hyperion.model.Model import set_n_photons [as 別名]

#.........這裏部分代碼省略.........
    nlam    = len(lam)

    # Create camera wavelength points
    n12     = 70.0
    n23     = 70.0
    n34     = 70.0
    n45     = 50.0
    n56     = 50.0
    
    lam12   = lambda1 * (lambda2/lambda1)**(np.arange(n12)/n12)
    lam23   = lambda2 * (lambda3/lambda2)**(np.arange(n23)/n23)
    lam34   = lambda3 * (lambda4/lambda3)**(np.arange(n34)/n34)
    lam45   = lambda4 * (lambda5/lambda4)**(np.arange(n45)/n45)
    lam56   = lambda5 * (lambda6/lambda5)**(np.arange(n56+1)/n56)

    lam_cam = np.concatenate([lam12,lam23,lam34,lam45,lam56])
    n_lam_cam = len(lam_cam)

    # Radiative transfer setting

    # number of photons for temp and image
    lam_list = lam.tolist()
    # print lam_list
    m.set_raytracing(True)
    # option of using more photons for imaging
    if better_im == False:
        im_photon = 1e6
    else:
        im_photon = 5e7

    if mono == True:
        # Monechromatic radiative transfer setting
        m.set_monochromatic(True, wavelengths=lam_list)
        m.set_n_photons(initial=1000000, imaging_sources=im_photon, imaging_dust=im_photon,raytracing_sources=1000000, raytracing_dust=1000000)
    else:
        # regular wavelength grid setting
        m.set_n_photons(initial=1000000, imaging=im_photon,raytracing_sources=1000000, raytracing_dust=1000000)    
    # number of iteration to compute dust specific energy (temperature)
    m.set_n_initial_iterations(20)
    # m.set_convergence(True, percentile=95., absolute=1.5, relative=1.02)
    m.set_convergence(True, percentile=dict_params['percentile'], absolute=dict_params['absolute'], relative=dict_params['relative'])
    m.set_mrw(True)   # Gamma = 1 by default
    # m.set_forced_first_scattering(forced_first_scattering=True)

    # Setting up images and SEDs
    # SED setting

    # Infinite aperture
    syn_inf = m.add_peeled_images(image=False)
    # use the index of wavelength array used by the monochromatic radiative transfer
    if mono == False:
        syn_inf.set_wavelength_range(1400, 2.0, 1400.0)
    syn_inf.set_viewing_angles([dict_params['view_angle']], [0.0])
    syn_inf.set_uncertainties(True)
    syn_inf.set_output_bytes(8)

    # aperture
    # 7.2 in 10 um scaled by lambda / 10
    # flatten beyond 20 um
    # default aperture
    if aperture == None:    
        aperture = {'wave': [3.6, 4.5, 5.8, 8.0, 8.5, 9, 9.7, 10, 10.5, 11, 16, 20, 24, 35, 70, 100, 160, 250, 350, 500, 1300],\
                    'aperture': [7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 20.4, 20.4, 20.4, 20.4, 24.5, 24.5, 24.5, 24.5, 24.5, 24.5, 101]}
    # assign wl_aper and aper from dictionary of aperture
    wl_aper = aperture['wave']
    aper    = aperture['aperture']
開發者ID:yaolun,項目名稱:misc,代碼行數:70,代碼來源:setup_hyperion_old.py

示例8: setup_model

# 需要導入模塊: from hyperion.model import Model [as 別名]
# 或者: from hyperion.model.Model import set_n_photons [as 別名]

#.........這裏部分代碼省略.........
                        #                 else:
                        #                     mu_o_dum = roots[imu]
                        #         if mu_o_dum == -0.5:
                        #             print 'Problem with cubic solving, roots are: ', roots
                        #     mu_o = mu_o_dum.real
                        #     rho_env[ir,itheta,iphi] = M_env_dot/(4*PI*(G*mstar*rcen**3)**0.5)*(rc[ir]/rcen)**(-3./2)*(1+mu/mu_o)**(-0.5)*(mu/mu_o+2*mu_o**2*rcen/rc[ir])**(-1)
                        # # Disk profile
                        # if ((w >= R_disk_min) and (w <= R_disk_max)) == True:
                        #     h = ((w/(100*AU))**beta)*h100
                        #     rho_disk[ir,itheta,iphi] = rho_0*(1-np.sqrt(rstar/w))*(rstar/w)**(beta+1)*np.exp(-0.5*(z/h)**2)
                        # # Combine envelope and disk
                        # rho[ir,itheta,iphi] = rho_disk[ir,itheta,iphi] + rho_env[ir,itheta,iphi]
                    else:
                        rho[ir,itheta,iphi] = 1e-30
        rho_env  = rho_env  + 1e-40
        rho_disk = rho_disk + 1e-40
        rho      = rho      + 1e-40
    else:
        for ir in range(0,len(rc)):
            for itheta in range(0,len(thetac)):
                for iphi in range(0,len(phic)):
                    # Envelope profile
                    w = abs(rc[ir]*np.cos(thetac[itheta]))
                    z = rc[ir]*np.sin(thetac[itheta])
                    z_cav = c*abs(w)**1.5
                    z_cav_wall = c*abs(w-wall)**1.5
                    if z_cav == 0:
                        z_cav = R_env_max
                    if abs(z) > abs(z_cav):
                        # rho_env[ir,itheta,iphi] = rho_cav
                        # Modification for using density gradient in the cavity
                        if rc[ir] <= 20*AU:
                            rho_env[ir,itheta,iphi] = rho_cav_center*((rc[ir]/AU)**2)
                        else:
                            rho_env[ir,itheta,iphi] = rho_cav_center*discont*(20*AU/rc[ir])**2
                        i += 1
                    elif (abs(z) > abs(z_cav_wall)) and (abs(z) < abs(z_cav)):
                        rho_env[ir,itheta,iphi] = rho_wall
                    else:
                        j += 1
                        mu = abs(np.cos(thetac[itheta]))
                        mu_o = np.abs(fsolve(func,[0.5,0.5,0.5],args=(rc[ir],rcen,mu))[0])
                        rho_env[ir,itheta,iphi] = M_env_dot/(4*PI*(G*mstar*rcen**3)**0.5)*(rc[ir]/rcen)**(-3./2)*(1+mu/mu_o)**(-0.5)*(mu/mu_o+2*mu_o**2*rcen/rc[ir])**(-1)
                    # Disk profile
                    if ((w >= R_disk_min) and (w <= R_disk_max)) == True:
                        h = ((w/(100*AU))**beta)*h100
                        rho_disk[ir,itheta,iphi] = rho_0*(1-np.sqrt(rstar/w))*(rstar/w)**(beta+1)*np.exp(-0.5*(z/h)**2)
                    # Combine envelope and disk
                    rho[ir,itheta,iphi] = rho_disk[ir,itheta,iphi] + rho_env[ir,itheta,iphi]
        rho_env  = rho_env  + 1e-40
        rho_disk = rho_disk + 1e-40
        rho      = rho      + 1e-40

    # Insert the calculated grid and dust density profile into hyperion
    m.set_spherical_polar_grid(ri, thetai, phii)
    m.add_density_grid(rho.T, outdir+'oh5.hdf5')    # numpy read the array in reverse order

    # Define the luminsoity source
    source = m.add_spherical_source()
    source.luminosity = (4*PI*rstar**2)*sigma*(tstar**4)  # [ergs/s]
    source.radius = rstar  # [cm]
    source.temperature = tstar  # [K]
    source.position = (0., 0., 0.)
    print 'L_center =  % 5.2f L_sun' % ((4*PI*rstar**2)*sigma*(tstar**4)/LS)

    # Setting up images and SEDs
    image = m.add_peeled_images()
    image.set_wavelength_range(300, 2.0, 670.0)
    # pixel number
    image.set_image_size(300, 300)
    image.set_image_limits(-R_env_max, R_env_max, -R_env_max, R_env_max)
    image.set_viewing_angles([82.0], [0.0])
    image.set_uncertainties(True)
    # output as 64-bit
    image.set_output_bytes(8)

    # Radiative transfer setting

    # number of photons for temp and image
    m.set_raytracing(True)
    m.set_n_photons(initial=1000000, imaging=1000000, raytracing_sources=1000000, raytracing_dust=1000000)
    # number of iteration to compute dust specific energy (temperature)
    m.set_n_initial_iterations(5)
    m.set_convergence(True, percentile=99., absolute=1.5, relative=1.02)
    m.set_mrw(True)   # Gamma = 1 by default

    # Output setting
    # Density
    m.conf.output.output_density = 'last'

    # Density difference (shows where dust was destroyed)
    m.conf.output.output_density_diff = 'none'

    # Energy absorbed (using pathlengths)
    m.conf.output.output_specific_energy = 'last'

    # Number of unique photons that passed through the cell
    m.conf.output.output_n_photons = 'last'

    m.write(outdir+'old_setup2.rtin')
開發者ID:yaolun,項目名稱:misc,代碼行數:104,代碼來源:setup_model_old.py

示例9: run_thermal_hyperion

# 需要導入模塊: from hyperion.model import Model [as 別名]
# 或者: from hyperion.model.Model import set_n_photons [as 別名]
    def run_thermal_hyperion(self, nphot=1e6, mrw=False, pda=False, \
            niterations=20, percentile=99., absolute=2.0, relative=1.02, \
            max_interactions=1e8, mpi=False, nprocesses=None):
        d = []
        for i in range(len(self.grid.dust)):
            d.append(IsotropicDust( \
                    self.grid.dust[i].nu[::-1].astype(numpy.float64), \
                    self.grid.dust[i].albedo[::-1].astype(numpy.float64), \
                    self.grid.dust[i].kext[::-1].astype(numpy.float64)))

        m = HypModel()
        if (self.grid.coordsystem == "cartesian"):
            m.set_cartesian_grid(self.grid.w1*AU, self.grid.w2*AU, \
                    self.grid.w3*AU)
        elif (self.grid.coordsystem == "cylindrical"):
            m.set_cylindrical_polar_grid(self.grid.w1*AU, self.grid.w3*AU, \
                    self.grid.w2)
        elif (self.grid.coordsystem == "spherical"):
            m.set_spherical_polar_grid(self.grid.w1*AU, self.grid.w2, \
                    self.grid.w3)

        for i in range(len(self.grid.density)):
            if (self.grid.coordsystem == "cartesian"):
                m.add_density_grid(numpy.transpose(self.grid.density[i], \
                        axes=(2,1,0)), d[i])
            if (self.grid.coordsystem == "cylindrical"):
                m.add_density_grid(numpy.transpose(self.grid.density[i], \
                        axes=(1,2,0)), d[i])
            if (self.grid.coordsystem == "spherical"):
                m.add_density_grid(numpy.transpose(self.grid.density[i], \
                        axes=(2,1,0)), d[i])

        sources = []
        for i in range(len(self.grid.stars)):
            sources.append(m.add_spherical_source())
            sources[i].luminosity = self.grid.stars[i].luminosity * L_sun
            sources[i].radius = self.grid.stars[i].radius * R_sun
            sources[i].temperature = self.grid.stars[i].temperature

        m.set_mrw(mrw)
        m.set_pda(pda)
        m.set_max_interactions(max_interactions)
        m.set_n_initial_iterations(niterations)
        m.set_n_photons(initial=nphot, imaging=0)
        m.set_convergence(True, percentile=percentile, absolute=absolute, \
                relative=relative)

        m.write("temp.rtin")

        m.run("temp.rtout", mpi=mpi, n_processes=nprocesses)

        n = ModelOutput("temp.rtout")

        grid = n.get_quantities()

        self.grid.temperature = []
        temperature = grid.quantities['temperature']
        for i in range(len(temperature)):
            if (self.grid.coordsystem == "cartesian"):
                self.grid.temperature.append(numpy.transpose(temperature[i], \
                        axes=(2,1,0)))
            if (self.grid.coordsystem == "cylindrical"):
                self.grid.temperature.append(numpy.transpose(temperature[i], \
                        axes=(2,0,1)))
            if (self.grid.coordsystem == "spherical"):
                self.grid.temperature.append(numpy.transpose(temperature[i], \
                        axes=(2,1,0)))

        os.system("rm temp.rtin temp.rtout")
開發者ID:psheehan,項目名稱:mcrt3d,代碼行數:71,代碼來源:Model.py

示例10:

# 需要導入模塊: from hyperion.model import Model [as 別名]
# 或者: from hyperion.model.Model import set_n_photons [as 別名]
# Add density grid with constant density and add a higher density cube inside to
# cause a shadow.
density = np.ones(m.grid.shape) * 1e-21
density[26:38, 26:38, 26:38] = 1.e-18
m.add_density_grid(density, 'kmh_lite.hdf5')

# Add a point source in the center
s = m.add_point_source()
s.position = (0.4 * pc, 0., 0.)
s.luminosity = 1000 * lsun
s.temperature = 6000.

# Add multi-wavelength image for a single viewing angle
image = m.add_peeled_images(sed=False, image=True)
image.set_wavelength_range(1, 190., 210.)
image.set_viewing_angles(np.repeat(45., 36), np.linspace(5., 355., 36))
image.set_image_size(400, 400)
image.set_image_limits(-1.5 * pc, 1.5 * pc, -1.5 * pc, 1.5 * pc)

# Set runtime parameters. We turn off scattering for the imaging since it is not
# important at these wavelengths.
m.set_n_initial_iterations(5)
m.set_raytracing(True)
m.set_n_photons(initial=4e6, imaging=0,
                raytracing_sources=1, raytracing_dust=1e7)

# Write out input file
m.write('flyaround_cube.rtin')
m.run('flyaround_cube.rtout', mpi=True)
開發者ID:ApolloVonSol,項目名稱:hyperion,代碼行數:31,代碼來源:flyaround_cube_setup.py

示例11: SphericalDust

# 需要導入模塊: from hyperion.model import Model [as 別名]
# 或者: from hyperion.model.Model import set_n_photons [as 別名]
    y = np.linspace(-5 * pc, 5 * pc, 100)
    z = np.hstack([np.linspace(-5 * pc, -2 * pc, 100), 5 * pc])

    m.set_cartesian_grid(x, y, z)

    # Grain Properties:

    d = SphericalDust('integrated_hg_scattering.hdf5')
    chi_v = d.optical_properties.interp_chi_wav(0.55)

    # Determine density in slab
    rho0 = tau_v / (3 * pc * chi_v)

    # Set up density grid
    density = np.ones(m.grid.shape) * rho0
    density[-1,:,:] = 0.

    m.add_density_grid(density, d)

    # Set up illuminating source:
    s = m.add_point_source()
    s.position = (0., 0., 4 * pc)
    s.temperature = 10000.0
    s.luminosity = 3.839e38

    # Set up number of photons
    m.set_n_photons(initial=1e9, imaging=0)

    # Write out and run
    m.write('bm1_slab_eff_tau{0:05.2f}_temperature.rtin'.format(tau_v), overwrite=True)
開發者ID:rolfkuiper,項目名稱:hyperion-trust,代碼行數:32,代碼來源:setup_temperature.py

示例12:

# 需要導入模塊: from hyperion.model import Model [as 別名]
# 或者: from hyperion.model.Model import set_n_photons [as 別名]
s.luminosity = 1000 * lsun
s.temperature = 6000.

# Add 10 SEDs for different viewing angles
image = m.add_peeled_images(sed=True, image=False)
image.set_wavelength_range(250, 0.01, 5000.)
image.set_viewing_angles(np.linspace(0., 90., 10), np.repeat(20., 10))
image.set_track_origin('basic')

# Add multi-wavelength image for a single viewing angle
image = m.add_peeled_images(sed=False, image=True)
image.set_wavelength_range(30, 1., 1000.)
image.set_viewing_angles([30.], [20.])
image.set_image_size(200, 200)
image.set_image_limits(-1.5 * pc, 1.5 * pc, -1.5 * pc, 1.5 * pc)

# Add a fly-around at 500 microns
image = m.add_peeled_images(sed=False, image=True)
image.set_wavelength_range(1, 499., 501.)
image.set_viewing_angles(np.repeat(45., 36), np.linspace(5., 355., 36))
image.set_image_size(200, 200)
image.set_image_limits(-1.5 * pc, 1.5 * pc, -1.5 * pc, 1.5 * pc)

# Set runtime parameters
m.set_n_initial_iterations(5)
m.set_raytracing(True)
m.set_n_photons(initial=1e6, imaging=1e7,
                raytracing_sources=0, raytracing_dust=1e6)

# Write out input file
m.write('tutorial_model_noray_sour.rtin')
開發者ID:koepferl,項目名稱:tutorial_photons,代碼行數:33,代碼來源:param_noray_sour.py

示例13: setup_model_shell

# 需要導入模塊: from hyperion.model import Model [as 別名]
# 或者: from hyperion.model.Model import set_n_photons [as 別名]

#.........這裏部分代碼省略.........
                        rho[ir,itheta,iphi] = rho_env[ir,itheta,iphi]
                    else:
                        rho[ir,itheta,iphi] = 1e-25
        rho_env  = rho_env  + 1e-40
        rho      = rho      + 1e-40

    # Call function to plot the density
    plot_density(rho, rc, thetac,'/Users/yaolun/bhr71/hyperion/', plotname='shell')
    # Insert the calculated grid and dust density profile into hyperion
    m.set_spherical_polar_grid(ri, thetai, phii)
    m.add_density_grid(rho.T, outdir+'oh5.hdf5')    # numpy read the array in reverse order

    # Define the luminsoity source
    source = m.add_spherical_source()
    source.luminosity = (4*PI*rstar**2)*sigma*(tstar**4)  # [ergs/s]
    source.radius = rstar  # [cm]
    source.temperature = tstar  # [K]
    source.position = (0., 0., 0.)
    print 'L_center =  % 5.2f L_sun' % ((4*PI*rstar**2)*sigma*(tstar**4)/LS)

    # Setting up the wavelength for monochromatic radiative transfer
    lambda0 = 0.1
    lambda1 = 2.0
    lambda2 = 50.0
    lambda3 = 95.0
    lambda4 = 200.0
    lambda5 = 314.0
    lambda6 = 670.0
    n01     = 10.0
    n12     = 20.0
    n23     = (lambda3-lambda2)/0.02
    n34     = (lambda4-lambda3)/0.03
    n45     = (lambda5-lambda4)/0.1
    n56     = (lambda6-lambda5)/0.1

    lam01   = lambda0 * (lambda1/lambda0)**(np.arange(n01)/n01)
    lam12   = lambda1 * (lambda2/lambda1)**(np.arange(n12)/n12)
    lam23   = lambda2 * (lambda3/lambda2)**(np.arange(n23)/n23)
    lam34   = lambda3 * (lambda4/lambda3)**(np.arange(n34)/n34)
    lam45   = lambda4 * (lambda5/lambda4)**(np.arange(n45)/n45)
    lam56   = lambda5 * (lambda6/lambda5)**(np.arange(n56+1)/n56)

    lam     = np.concatenate([lam01,lam12,lam23,lam34,lam45,lam56])
    nlam    = len(lam)

    # Create camera wavelength points
    n12     = 70.0
    n23     = 70.0
    n34     = 70.0
    n45     = 50.0
    n56     = 50.0
    
    lam12   = lambda1 * (lambda2/lambda1)**(np.arange(n12)/n12)
    lam23   = lambda2 * (lambda3/lambda2)**(np.arange(n23)/n23)
    lam34   = lambda3 * (lambda4/lambda3)**(np.arange(n34)/n34)
    lam45   = lambda4 * (lambda5/lambda4)**(np.arange(n45)/n45)
    lam56   = lambda5 * (lambda6/lambda5)**(np.arange(n56+1)/n56)

    lam_cam = np.concatenate([lam12,lam23,lam34,lam45,lam56])
    n_lam_cam = len(lam_cam)

    # Radiative transfer setting

    # number of photons for temp and image
    m.set_raytracing(True)
    m.set_monochromatic(True, wavelengths=[3.6, 4.5, 5.8, 8.0, 24, 70, 100, 160, 250, 350, 500])
    m.set_n_photons(initial=1000000, imaging_sources=1000000, imaging_dust=1000000,raytracing_sources=1000000, raytracing_dust=1000000)
    # imaging=100000, raytracing_sources=100000, raytracing_dust=100000
    # number of iteration to compute dust specific energy (temperature)
    m.set_n_initial_iterations(5)
    m.set_convergence(True, percentile=99., absolute=1.5, relative=1.02)
    m.set_mrw(True)   # Gamma = 1 by default
    # m.set_forced_first_scattering(forced_first_scattering=True)
    # Setting up images and SEDs
    image = m.add_peeled_images()
    # image.set_wavelength_range(300, 2.0, 670.0)
    # use the index of wavelength array used by the monochromatic radiative transfer
    image.set_wavelength_index_range(2,12)
    # pixel number
    image.set_image_size(300, 300)
    image.set_image_limits(-R_env_max, R_env_max, -R_env_max, R_env_max)
    image.set_viewing_angles([82.0], [0.0])
    image.set_uncertainties(True)
    # output as 64-bit
    image.set_output_bytes(8)

    # Output setting
    # Density
    m.conf.output.output_density = 'last'

    # Density difference (shows where dust was destroyed)
    m.conf.output.output_density_diff = 'none'

    # Energy absorbed (using pathlengths)
    m.conf.output.output_specific_energy = 'last'

    # Number of unique photons that passed through the cell
    m.conf.output.output_n_photons = 'last'

    m.write(outdir+outname+'.rtin')
開發者ID:yaolun,項目名稱:misc,代碼行數:104,代碼來源:setup_model_shell.py

示例14:

# 需要導入模塊: from hyperion.model import Model [as 別名]
# 或者: from hyperion.model.Model import set_n_photons [as 別名]
    m.add_density_grid(density, d)

    # Set up illuminating source:

    wav, fnu = np.loadtxt('data/BB_T10000_L100000.dat', usecols=[0,1], unpack=True)
    nu = c / (wav * 1.e-4)
    nu = nu[::-1]
    fnu = fnu[::-1]

    s = m.add_point_source()
    s.position = (0., 0., 4 * pc)
    s.luminosity = 3.839e38
    s.spectrum = (nu, fnu)

    # Set up number of photons
    m.set_n_photons(initial=settings['temperature']['n_photons'], imaging=0)

    m.conf.output.output_specific_energy = 'all'

    # The settings below converge after 4 iterations, so we force 10 iterations
    # instead to be safe since this run doesn't take too long.
    # m.set_n_initial_iterations(NITER_MAX)
    # m.set_convergence(True, percentile=99.9, absolute=2., relative=1.01)
    m.set_n_initial_iterations(settings['temperature']['n_iter'])

    # Don't copy input into output
    m.set_copy_input(False)

    # Write out and run
    model_name = 'models/hyper_slab_eff_t{0}_temperature'.format(TAU_LABEL[tau_v])
    m.write(model_name + '.rtin', overwrite=True, copy=False)
開發者ID:hyperion-rt,項目名稱:hyperion-trust,代碼行數:33,代碼來源:setup_effgrain_temperature.py

示例15:

# 需要導入模塊: from hyperion.model import Model [as 別名]
# 或者: from hyperion.model.Model import set_n_photons [as 別名]
s.luminosity = 1000 * lsun
s.temperature = 6000.

# Add 10 SEDs for different viewing angles
image = m.add_peeled_images(sed=True, image=False)
image.set_wavelength_range(250, 0.01, 5000.)
image.set_viewing_angles(np.linspace(0., 90., 10), np.repeat(20., 10))
image.set_track_origin('basic')

# Add multi-wavelength image for a single viewing angle
image = m.add_peeled_images(sed=False, image=True)
image.set_wavelength_range(30, 1., 1000.)
image.set_viewing_angles([30.], [20.])
image.set_image_size(200, 200)
image.set_image_limits(-1.5 * pc, 1.5 * pc, -1.5 * pc, 1.5 * pc)

# Add a fly-around at 500 microns
image = m.add_peeled_images(sed=False, image=True)
image.set_wavelength_range(1, 499., 501.)
image.set_viewing_angles(np.repeat(45., 36), np.linspace(5., 355., 36))
image.set_image_size(200, 200)
image.set_image_limits(-1.5 * pc, 1.5 * pc, -1.5 * pc, 1.5 * pc)

# Set runtime parameters
m.set_n_initial_iterations(5)
m.set_raytracing(True)
m.set_n_photons(initial=1e5, imaging=1e6,
                raytracing_sources=1e5, raytracing_dust=1e5)

# Write out input file
m.write('tutorial_model.rtin')
開發者ID:koepferl,項目名稱:tutorial_basic,代碼行數:33,代碼來源:setup.py


注:本文中的hyperion.model.Model.set_n_photons方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。