本文整理匯總了Python中hyperion.model.Model.set_monochromatic方法的典型用法代碼示例。如果您正苦於以下問題:Python Model.set_monochromatic方法的具體用法?Python Model.set_monochromatic怎麽用?Python Model.set_monochromatic使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類hyperion.model.Model
的用法示例。
在下文中一共展示了Model.set_monochromatic方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: setup_model_shell
# 需要導入模塊: from hyperion.model import Model [as 別名]
# 或者: from hyperion.model.Model import set_monochromatic [as 別名]
#.........這裏部分代碼省略.........
rho[ir,itheta,iphi] = rho_env[ir,itheta,iphi]
else:
rho[ir,itheta,iphi] = 1e-25
rho_env = rho_env + 1e-40
rho = rho + 1e-40
# Call function to plot the density
plot_density(rho, rc, thetac,'/Users/yaolun/bhr71/hyperion/', plotname='shell')
# Insert the calculated grid and dust density profile into hyperion
m.set_spherical_polar_grid(ri, thetai, phii)
m.add_density_grid(rho.T, outdir+'oh5.hdf5') # numpy read the array in reverse order
# Define the luminsoity source
source = m.add_spherical_source()
source.luminosity = (4*PI*rstar**2)*sigma*(tstar**4) # [ergs/s]
source.radius = rstar # [cm]
source.temperature = tstar # [K]
source.position = (0., 0., 0.)
print 'L_center = % 5.2f L_sun' % ((4*PI*rstar**2)*sigma*(tstar**4)/LS)
# Setting up the wavelength for monochromatic radiative transfer
lambda0 = 0.1
lambda1 = 2.0
lambda2 = 50.0
lambda3 = 95.0
lambda4 = 200.0
lambda5 = 314.0
lambda6 = 670.0
n01 = 10.0
n12 = 20.0
n23 = (lambda3-lambda2)/0.02
n34 = (lambda4-lambda3)/0.03
n45 = (lambda5-lambda4)/0.1
n56 = (lambda6-lambda5)/0.1
lam01 = lambda0 * (lambda1/lambda0)**(np.arange(n01)/n01)
lam12 = lambda1 * (lambda2/lambda1)**(np.arange(n12)/n12)
lam23 = lambda2 * (lambda3/lambda2)**(np.arange(n23)/n23)
lam34 = lambda3 * (lambda4/lambda3)**(np.arange(n34)/n34)
lam45 = lambda4 * (lambda5/lambda4)**(np.arange(n45)/n45)
lam56 = lambda5 * (lambda6/lambda5)**(np.arange(n56+1)/n56)
lam = np.concatenate([lam01,lam12,lam23,lam34,lam45,lam56])
nlam = len(lam)
# Create camera wavelength points
n12 = 70.0
n23 = 70.0
n34 = 70.0
n45 = 50.0
n56 = 50.0
lam12 = lambda1 * (lambda2/lambda1)**(np.arange(n12)/n12)
lam23 = lambda2 * (lambda3/lambda2)**(np.arange(n23)/n23)
lam34 = lambda3 * (lambda4/lambda3)**(np.arange(n34)/n34)
lam45 = lambda4 * (lambda5/lambda4)**(np.arange(n45)/n45)
lam56 = lambda5 * (lambda6/lambda5)**(np.arange(n56+1)/n56)
lam_cam = np.concatenate([lam12,lam23,lam34,lam45,lam56])
n_lam_cam = len(lam_cam)
# Radiative transfer setting
# number of photons for temp and image
m.set_raytracing(True)
m.set_monochromatic(True, wavelengths=[3.6, 4.5, 5.8, 8.0, 24, 70, 100, 160, 250, 350, 500])
m.set_n_photons(initial=1000000, imaging_sources=1000000, imaging_dust=1000000,raytracing_sources=1000000, raytracing_dust=1000000)
# imaging=100000, raytracing_sources=100000, raytracing_dust=100000
# number of iteration to compute dust specific energy (temperature)
m.set_n_initial_iterations(5)
m.set_convergence(True, percentile=99., absolute=1.5, relative=1.02)
m.set_mrw(True) # Gamma = 1 by default
# m.set_forced_first_scattering(forced_first_scattering=True)
# Setting up images and SEDs
image = m.add_peeled_images()
# image.set_wavelength_range(300, 2.0, 670.0)
# use the index of wavelength array used by the monochromatic radiative transfer
image.set_wavelength_index_range(2,12)
# pixel number
image.set_image_size(300, 300)
image.set_image_limits(-R_env_max, R_env_max, -R_env_max, R_env_max)
image.set_viewing_angles([82.0], [0.0])
image.set_uncertainties(True)
# output as 64-bit
image.set_output_bytes(8)
# Output setting
# Density
m.conf.output.output_density = 'last'
# Density difference (shows where dust was destroyed)
m.conf.output.output_density_diff = 'none'
# Energy absorbed (using pathlengths)
m.conf.output.output_specific_energy = 'last'
# Number of unique photons that passed through the cell
m.conf.output.output_n_photons = 'last'
m.write(outdir+outname+'.rtin')
示例2: setup_model
# 需要導入模塊: from hyperion.model import Model [as 別名]
# 或者: from hyperion.model.Model import set_monochromatic [as 別名]
#.........這裏部分代碼省略.........
print(" grid_Nw =",grid_Nw)
print(" grid_Nz =",grid_Nz)
print(" grid_Np =",grid_Np)
print("Radiation setup:")
print(" photons_temperature / cell =", cli.photons_temperature)
print(" photons_temperature total =", grid_N * cli.photons_temperature)
print(" photons_raytracing / cell =", cli.photons_raytracing)
print(" photons_raytracing total =", grid_N * cli.photons_raytracing)
print(" photons_imaging / cell =", cli.photons_imaging)
print(" photons_imaging total =", grid_N * cli.photons_imaging)
file = filename(cli, "")
file += ".rtin"
##
## Temperature, Images, and SEDs:
##
if(cli.mode == "temperature"):
model.set_raytracing(True)
model.set_n_photons(
initial = grid_N * cli.photons_temperature,
raytracing_sources = grid_N * cli.photons_raytracing,
raytracing_dust = grid_N * cli.photons_raytracing,
imaging = grid_N * cli.photons_imaging
)
elif(cli.mode == "images"):
model.set_n_initial_iterations(0)
model.set_raytracing(True)
# old setup: model.set_monochromatic(True, wavelengths=[0.4, 1.0, 10.0, 100.0, 500.0])
model.set_monochromatic(True, wavelengths=[0.45483, 1.2520, 26.114, 242.29])
model.set_n_photons(
raytracing_sources = grid_N * cli.photons_raytracing,
raytracing_dust = grid_N * cli.photons_raytracing,
imaging_sources = grid_N * cli.photons_imaging,
imaging_dust = grid_N * cli.photons_imaging
)
# group = 0
image1 = model.add_peeled_images(sed=False, image=True)
image1.set_image_size(501, 501)
image1.set_image_limits(-12500.0*pc, +12500.0*pc, -12500.0*pc, +12500.0*pc)
image1.set_viewing_angles([30],[0])
image1.set_uncertainties(True)
image1.set_output_bytes(8)
image1.set_track_origin('basic')
# group = 1
image2 = model.add_peeled_images(sed=False, image=True)
image2.set_image_size(501, 501)
image2.set_image_limits(-12500.0*pc, +12500.0*pc, -12500.0*pc, +12500.0*pc)
image2.set_viewing_angles([80],[90])
image2.set_uncertainties(True)
image2.set_output_bytes(8)
image2.set_track_origin('basic')
# group = 2
image3 = model.add_peeled_images(sed=False, image=True)
image3.set_image_size(501, 501)
image3.set_image_limits(-12500.0*pc, +12500.0*pc, -12500.0*pc, +12500.0*pc)
image3.set_viewing_angles([88],[0]) # mostly edge-on
image3.set_uncertainties(True)
image3.set_output_bytes(8)
示例3: setup_model
# 需要導入模塊: from hyperion.model import Model [as 別名]
# 或者: from hyperion.model.Model import set_monochromatic [as 別名]
#.........這裏部分代碼省略.........
rho[ir,itheta,iphi] = 1e-40
# add the dust mass into the total count
cell_mass = rho[ir, itheta, iphi] * (1/3.)*(ri[ir+1]**3 - ri[ir]**3) * (phii[iphi+1]-phii[iphi]) * -(np.cos(thetai[itheta+1])-np.cos(thetai[itheta]))
total_mass = total_mass + cell_mass
# apply gas-to-dust ratio of 100
rho_dust = rho/g2d
total_mass_dust = total_mass/MS/g2d
print('Total dust mass = %f Solar mass' % total_mass_dust)
# Insert the calculated grid and dust density profile into hyperion
m.set_spherical_polar_grid(ri, thetai, phii)
m.add_density_grid(rho_dust.T, d)
# Define the luminsoity source
source = m.add_spherical_source()
source.luminosity = (4*PI*rstar**2)*sigma*(tstar**4) # [ergs/s]
source.radius = rstar # [cm]
source.temperature = tstar # [K]
source.position = (0., 0., 0.)
print('L_center = % 5.2f L_sun' % ((4*PI*rstar**2)*sigma*(tstar**4)/LS))
# radiative transfer settigs
m.set_raytracing(True)
# determine the number of photons for imaging
# the case of monochromatic
if mono_wave != None:
if (type(mono_wave) == int) or (type(mono_wave) == float) or (type(mono_wave) == str):
mono_wave = float(mono_wave)
mono_wave = [mono_wave]
# Monochromatic radiative transfer setting
m.set_monochromatic(True, wavelengths=mono_wave)
m.set_n_photons(initial=mc_photons, imaging_sources=im_photon,
imaging_dust=im_photon, raytracing_sources=im_photon,
raytracing_dust=im_photon)
# regular SED
else:
m.set_n_photons(initial=mc_photons, imaging=im_photon * wav_num,
raytracing_sources=im_photon,
raytracing_dust=im_photon)
# number of iteration to compute dust specific energy (temperature)
m.set_n_initial_iterations(20)
m.set_convergence(True, percentile=dict_params['percentile'],
absolute=dict_params['absolute'],
relative=dict_params['relative'])
m.set_mrw(True) # Gamma = 1 by default
# Setting up images and SEDs
if not image_only:
# SED setting
# Infinite aperture
syn_inf = m.add_peeled_images(image=False)
# use the index of wavelength array used by the monochromatic radiative transfer
if mono_wave == None:
syn_inf.set_wavelength_range(wav_num, wav_min, wav_max)
syn_inf.set_viewing_angles([dict_params['view_angle']], [0.0])
syn_inf.set_uncertainties(True)
syn_inf.set_output_bytes(8)
# aperture
# 7.2 in 10 um scaled by lambda / 10
# flatten beyond 20 um
# default aperture (should always specify a set of apertures)
示例4: setup_model
# 需要導入模塊: from hyperion.model import Model [as 別名]
# 或者: from hyperion.model.Model import set_monochromatic [as 別名]
#.........這裏部分代碼省略.........
lam = np.concatenate([lam01,lam12,lam23])
nlam = len(lam)
# Create camera wavelength points
n12 = 70.0
n23 = 70.0
n34 = 70.0
n45 = 50.0
n56 = 50.0
lam12 = lambda1 * (lambda2/lambda1)**(np.arange(n12)/n12)
lam23 = lambda2 * (lambda3/lambda2)**(np.arange(n23)/n23)
lam34 = lambda3 * (lambda4/lambda3)**(np.arange(n34)/n34)
lam45 = lambda4 * (lambda5/lambda4)**(np.arange(n45)/n45)
lam56 = lambda5 * (lambda6/lambda5)**(np.arange(n56+1)/n56)
lam_cam = np.concatenate([lam12,lam23,lam34,lam45,lam56])
n_lam_cam = len(lam_cam)
# Radiative transfer setting
# number of photons for temp and image
lam_list = lam.tolist()
# print lam_list
m.set_raytracing(True)
# option of using more photons for imaging
if better_im == False:
im_photon = 1e6
else:
im_photon = 5e7
if mono == True:
# Monechromatic radiative transfer setting
m.set_monochromatic(True, wavelengths=lam_list)
m.set_n_photons(initial=1000000, imaging_sources=im_photon, imaging_dust=im_photon,raytracing_sources=1000000, raytracing_dust=1000000)
else:
# regular wavelength grid setting
m.set_n_photons(initial=1000000, imaging=im_photon,raytracing_sources=1000000, raytracing_dust=1000000)
# number of iteration to compute dust specific energy (temperature)
m.set_n_initial_iterations(20)
# m.set_convergence(True, percentile=95., absolute=1.5, relative=1.02)
m.set_convergence(True, percentile=dict_params['percentile'], absolute=dict_params['absolute'], relative=dict_params['relative'])
m.set_mrw(True) # Gamma = 1 by default
# m.set_forced_first_scattering(forced_first_scattering=True)
# Setting up images and SEDs
# SED setting
# Infinite aperture
syn_inf = m.add_peeled_images(image=False)
# use the index of wavelength array used by the monochromatic radiative transfer
if mono == False:
syn_inf.set_wavelength_range(1400, 2.0, 1400.0)
syn_inf.set_viewing_angles([dict_params['view_angle']], [0.0])
syn_inf.set_uncertainties(True)
syn_inf.set_output_bytes(8)
# aperture
# 7.2 in 10 um scaled by lambda / 10
# flatten beyond 20 um
# default aperture
if aperture == None:
aperture = {'wave': [3.6, 4.5, 5.8, 8.0, 8.5, 9, 9.7, 10, 10.5, 11, 16, 20, 24, 35, 70, 100, 160, 250, 350, 500, 1300],\
'aperture': [7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 20.4, 20.4, 20.4, 20.4, 24.5, 24.5, 24.5, 24.5, 24.5, 24.5, 101]}
# assign wl_aper and aper from dictionary of aperture
wl_aper = aperture['wave']