本文整理匯總了Python中hpelm.ELM.train方法的典型用法代碼示例。如果您正苦於以下問題:Python ELM.train方法的具體用法?Python ELM.train怎麽用?Python ELM.train使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類hpelm.ELM
的用法示例。
在下文中一共展示了ELM.train方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_TrainWithBatch_OverwritesBatch
# 需要導入模塊: from hpelm import ELM [as 別名]
# 或者: from hpelm.ELM import train [as 別名]
def test_TrainWithBatch_OverwritesBatch(self):
elm = ELM(1, 1, batch=123)
X = np.array([1, 2, 3])
T = np.array([1, 2, 3])
elm.add_neurons(1, "lin")
elm.train(X, T, batch=234)
self.assertEqual(234, elm.batch)
示例2: test_MultiLabelClassification_Works
# 需要導入模塊: from hpelm import ELM [as 別名]
# 或者: from hpelm.ELM import train [as 別名]
def test_MultiLabelClassification_Works(self):
elm = ELM(1, 2)
X = np.array([1, 2, 3, 4, 5, 6])
T = np.array([[1, 1], [1, 0], [1, 0], [0, 1], [0, 1], [1, 1]])
elm.add_neurons(1, "lin")
elm.train(X, T, 'ml')
elm.train(X, T, 'mc')
示例3: test_ELM_SaveLoad
# 需要導入模塊: from hpelm import ELM [as 別名]
# 或者: from hpelm.ELM import train [as 別名]
def test_ELM_SaveLoad(self):
X = np.array([1, 2, 3, 1, 2, 3])
T = np.array([[1, 0], [1, 0], [1, 0], [0, 1], [0, 1], [0, 1]])
elm = ELM(1, 2, precision='32', norm=0.02)
elm.add_neurons(1, "lin")
elm.add_neurons(2, "tanh")
elm.train(X, T, "wc", w=(0.7, 0.3))
B1 = elm.nnet.get_B()
try:
f, fname = tempfile.mkstemp()
elm.save(fname)
elm2 = ELM(3, 3)
elm2.load(fname)
finally:
os.close(f)
self.assertEqual(elm2.nnet.inputs, 1)
self.assertEqual(elm2.nnet.outputs, 2)
self.assertEqual(elm2.classification, "wc")
self.assertIs(elm.precision, np.float32)
self.assertIs(elm2.precision, np.float64) # precision has changed
np.testing.assert_allclose(np.array([0.7, 0.3]), elm2.wc)
np.testing.assert_allclose(0.02, elm2.nnet.norm)
np.testing.assert_allclose(B1, elm2.nnet.get_B())
self.assertEqual(elm2.nnet.get_neurons()[0][1], "lin")
self.assertEqual(elm2.nnet.get_neurons()[1][1], "tanh")
示例4: HPELMNN
# 需要導入模塊: from hpelm import ELM [as 別名]
# 或者: from hpelm.ELM import train [as 別名]
class HPELMNN(Classifier):
def __init__(self):
self.__hpelm = None
@staticmethod
def name():
return "hpelmnn"
def train(self, X, Y, class_number=-1):
class_count = max(np.unique(Y).size, class_number)
feature_count = X.shape[1]
self.__hpelm = ELM(feature_count, class_count, 'wc')
self.__hpelm.add_neurons(feature_count, "sigm")
Y_arr = Y.reshape(-1, 1)
enc = OneHotEncoder()
enc.fit(Y_arr)
Y_OHE = enc.transform(Y_arr).toarray()
out_fd = sys.stdout
sys.stdout = open(os.devnull, 'w')
self.__hpelm.train(X, Y_OHE)
sys.stdout = out_fd
def predict(self, X):
Y_predicted = self.__hpelm.predict(X)
return Y_predicted
示例5: test_Classification_WorksCorreclty
# 需要導入模塊: from hpelm import ELM [as 別名]
# 或者: from hpelm.ELM import train [as 別名]
def test_Classification_WorksCorreclty(self):
elm = ELM(1, 2)
X = np.array([-1, -0.6, -0.3, 0.3, 0.6, 1])
T = np.array([[1, 0], [1, 0], [1, 0], [0, 1], [0, 1], [0, 1]])
elm.add_neurons(1, "lin")
elm.train(X, T, 'c')
Y = elm.predict(X)
self.assertGreater(Y[0, 0], Y[0, 1])
self.assertLess(Y[5, 0], Y[5, 1])
示例6: test_WeightedClassification_ClassWithLargerWeightWins
# 需要導入模塊: from hpelm import ELM [as 別名]
# 或者: from hpelm.ELM import train [as 別名]
def test_WeightedClassification_ClassWithLargerWeightWins(self):
elm = ELM(1, 2)
X = np.array([1, 2, 3, 1, 2, 3])
T = np.array([[1, 0], [1, 0], [1, 0], [0, 1], [0, 1], [0, 1]])
elm.add_neurons(1, "lin")
elm.train(X, T, 'wc', w=(1, 0.1))
Y = elm.predict(X)
self.assertGreater(Y[0, 0], Y[0, 1])
self.assertGreater(Y[1, 0], Y[1, 1])
self.assertGreater(Y[2, 0], Y[2, 1])
示例7: build_ELM_encoder
# 需要導入模塊: from hpelm import ELM [as 別名]
# 或者: from hpelm.ELM import train [as 別名]
def build_ELM_encoder(xinput, target, num_neurons):
elm = ELM(xinput.shape[1], target.shape[1])
elm.add_neurons(num_neurons, "sigm")
elm.add_neurons(num_neurons, "lin")
#elm.add_neurons(num_neurons, "rbf_l1")
elm.train(xinput, target, "r")
ypred = elm.predict(xinput)
print "mse error", elm.error(ypred, target)
return elm, ypred
示例8: test_LOOandOP_CanSelectMoreThanOneNeuron
# 需要導入模塊: from hpelm import ELM [as 別名]
# 或者: from hpelm.ELM import train [as 別名]
def test_LOOandOP_CanSelectMoreThanOneNeuron(self):
X = np.random.rand(100, 5)
T = np.random.rand(100, 2)
for _ in range(10):
model = ELM(5, 2)
model.add_neurons(5, 'lin')
model.train(X, T, 'LOO', 'OP')
max2 = model.nnet.L
if max2 > 1:
break
self.assertGreater(max2, 1)
示例9: test_CrossValidation_ReturnsError
# 需要導入模塊: from hpelm import ELM [as 別名]
# 或者: from hpelm.ELM import train [as 別名]
def test_CrossValidation_ReturnsError(self):
model = ELM(5, 2)
model.add_neurons(10, 'tanh')
X = np.random.rand(100, 5)
T = np.random.rand(100, 2)
err = model.train(X, T, 'CV', k=3)
self.assertIsNotNone(err)
示例10: test_MRSR2_Works
# 需要導入模塊: from hpelm import ELM [as 別名]
# 或者: from hpelm.ELM import train [as 別名]
def test_MRSR2_Works(self):
X = np.random.rand(20, 9)
T = np.random.rand(20, 12)
elm = ELM(9, 12)
elm.add_neurons(5, "tanh")
elm.train(X, T, "LOO", "OP")
示例11: test_WeightedClassification_DefaultWeightsWork
# 需要導入模塊: from hpelm import ELM [as 別名]
# 或者: from hpelm.ELM import train [as 別名]
def test_WeightedClassification_DefaultWeightsWork(self):
elm = ELM(1, 2)
X = np.array([1, 2, 3, 1, 2, 3])
T = np.array([[1, 0], [1, 0], [1, 0], [0, 1], [0, 1], [0, 1]])
elm.add_neurons(1, "lin")
elm.train(X, T, 'wc')
示例12: calc_W_B_para
# 需要導入模塊: from hpelm import ELM [as 別名]
# 或者: from hpelm.ELM import train [as 別名]
def calc_W_B_para(C=0.7,input_node_num=input_node_num,hide_node_num=hide_node_num,):
beta=C*math.pow(hide_node_num,(1/float(input_node_num)))
W_old=np.random.uniform(-0.5,0.5,size=(input_node_num,hide_node_num))
if input_node_num == 1:
W_old = W_old / np.abs(W_old)
else:
W_old = np.sqrt(1. / np.square(W_old).sum(axis=1).reshape(input_node_num, 1)) * W_old
W_new=beta*W_old
Bias=np.random.uniform(-beta,beta,size=(hide_node_num,))
return [W_new,Bias]
W,B=calc_W_B_para()
elm = ELM(input_node_num,output_node_num,ak=ak,bk=bk)
elm.add_neurons(20, "avg_arcsinh_morlet",W=W,B=B)
elm.train(X_learn, Y_learn, "r")
def plot_prognostic(train_out):
inputs_regressors_num=list(X_learn[len(X_learn)-1,:])
len_just_prog=len_prognostics-1100
FC1_prognostics=[]
for i in range(len_just_prog):
if i <regressors_num:
if i ==0:
inputs=list(inputs_regressors_num)
inputs=np.array(inputs)
inputs.resize(1,4)
FC1_prognostics.append(elm.predict(inputs))
elif i>=1:
示例13: test_8_OneDimensionTargets_RunsCorrectly
# 需要導入模塊: from hpelm import ELM [as 別名]
# 或者: from hpelm.ELM import train [as 別名]
def test_8_OneDimensionTargets_RunsCorrectly(self):
X = np.array([[1, 2], [3, 4], [5, 6]])
T = np.array([[0], [0], [0]])
elm = ELM(2, 1)
elm.add_neurons(1, "lin")
elm.train(X, T)
示例14: test_7_ZeroInputs_RunsCorrectly
# 需要導入模塊: from hpelm import ELM [as 別名]
# 或者: from hpelm.ELM import train [as 別名]
def test_7_ZeroInputs_RunsCorrectly(self):
X = np.array([[0, 0], [0, 0], [0, 0]])
T = np.array([1, 2, 3])
elm = ELM(2, 1)
elm.add_neurons(1, "lin")
elm.train(X, T)
示例15: test_4_OneDimensionTargets_RunsCorrectly
# 需要導入模塊: from hpelm import ELM [as 別名]
# 或者: from hpelm.ELM import train [as 別名]
def test_4_OneDimensionTargets_RunsCorrectly(self):
X = np.array([1, 2, 3])
T = np.array([1, 2, 3])
elm = ELM(1, 1)
elm.add_neurons(1, "lin")
elm.train(X, T)