當前位置: 首頁>>代碼示例>>Python>>正文


Python ELM.predict方法代碼示例

本文整理匯總了Python中hpelm.ELM.predict方法的典型用法代碼示例。如果您正苦於以下問題:Python ELM.predict方法的具體用法?Python ELM.predict怎麽用?Python ELM.predict使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在hpelm.ELM的用法示例。


在下文中一共展示了ELM.predict方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: HPELMNN

# 需要導入模塊: from hpelm import ELM [as 別名]
# 或者: from hpelm.ELM import predict [as 別名]
class HPELMNN(Classifier):
    
    def __init__(self):
        self.__hpelm = None
    
    @staticmethod
    def name():
        return "hpelmnn"

    def train(self, X, Y, class_number=-1):
        class_count = max(np.unique(Y).size, class_number)
        feature_count = X.shape[1]
        self.__hpelm = ELM(feature_count, class_count, 'wc')
        self.__hpelm.add_neurons(feature_count, "sigm")

        Y_arr = Y.reshape(-1, 1)
        enc = OneHotEncoder()
        enc.fit(Y_arr)
        Y_OHE = enc.transform(Y_arr).toarray()

        out_fd = sys.stdout
        sys.stdout = open(os.devnull, 'w')
        self.__hpelm.train(X, Y_OHE)
        sys.stdout = out_fd

    def predict(self, X):
        Y_predicted = self.__hpelm.predict(X)
        return Y_predicted
開發者ID:grzesiekzajac,項目名稱:ziwm,代碼行數:30,代碼來源:hpelmnn.py

示例2: test_Classification_WorksCorreclty

# 需要導入模塊: from hpelm import ELM [as 別名]
# 或者: from hpelm.ELM import predict [as 別名]
 def test_Classification_WorksCorreclty(self):
     elm = ELM(1, 2)
     X = np.array([-1, -0.6, -0.3, 0.3, 0.6, 1])
     T = np.array([[1, 0], [1, 0], [1, 0], [0, 1], [0, 1], [0, 1]])
     elm.add_neurons(1, "lin")
     elm.train(X, T, 'c')
     Y = elm.predict(X)
     self.assertGreater(Y[0, 0], Y[0, 1])
     self.assertLess(Y[5, 0], Y[5, 1])
開發者ID:IstanbulBoy,項目名稱:hpelm,代碼行數:11,代碼來源:test_correctness.py

示例3: test_WeightedClassification_ClassWithLargerWeightWins

# 需要導入模塊: from hpelm import ELM [as 別名]
# 或者: from hpelm.ELM import predict [as 別名]
 def test_WeightedClassification_ClassWithLargerWeightWins(self):
     elm = ELM(1, 2)
     X = np.array([1, 2, 3, 1, 2, 3])
     T = np.array([[1, 0], [1, 0], [1, 0], [0, 1], [0, 1], [0, 1]])
     elm.add_neurons(1, "lin")
     elm.train(X, T, 'wc', w=(1, 0.1))
     Y = elm.predict(X)
     self.assertGreater(Y[0, 0], Y[0, 1])
     self.assertGreater(Y[1, 0], Y[1, 1])
     self.assertGreater(Y[2, 0], Y[2, 1])
開發者ID:IstanbulBoy,項目名稱:hpelm,代碼行數:12,代碼來源:test_correctness.py

示例4: build_ELM_encoder

# 需要導入模塊: from hpelm import ELM [as 別名]
# 或者: from hpelm.ELM import predict [as 別名]
def build_ELM_encoder(xinput, target, num_neurons):


    elm = ELM(xinput.shape[1], target.shape[1])
    elm.add_neurons(num_neurons, "sigm")
    elm.add_neurons(num_neurons, "lin")
    #elm.add_neurons(num_neurons, "rbf_l1")
    elm.train(xinput, target, "r")
    ypred = elm.predict(xinput)
    print "mse error", elm.error(ypred, target)
    return elm, ypred
開發者ID:btekgit,項目名稱:mitosisdetection,代碼行數:13,代碼來源:elmTest.py

示例5: range

# 需要導入模塊: from hpelm import ELM [as 別名]
# 或者: from hpelm.ELM import predict [as 別名]
#!/usr/bin/env python

import numpy as np
import time
import random
import sys
from hpelm import ELM

inp = np.loadtxt("input.txt")
outp = np.loadtxt("output.txt")

for neuron in range(10, 1000, 10):
    elm = ELM(92, 40)
    elm.add_neurons(neuron, "sigm")

    t0 = time.clock()
    elm.train(inp, outp, "c")
    t1 = time.clock()
    t = t1-t0

    pred = elm.predict(inp)
    acc = float(np.sum(outp.argmax(1) == pred.argmax(1))) / outp.shape[0]
    print "neuron=%d error=%.1f%% time=%dns" % (neuron, 100-acc*100, t*1000000)
    
    if int(acc) == 1:
        break
開發者ID:minhazul-haque,項目名稱:py-facerec-elm,代碼行數:28,代碼來源:hidden_node_count.py

示例6: ELM

# 需要導入模塊: from hpelm import ELM [as 別名]
# 或者: from hpelm.ELM import predict [as 別名]
outp = np.loadtxt("output.txt")

# BUILD ELM -----------------------------------------------
neuron = 400
elm = ELM(92, 40)
elm.add_neurons(neuron, "sigm")

# TRAIN ---------------------------------------------------
t0 = time.clock()
elm.train(inp, outp, "c")
t1 = time.clock()
tr = t1-t0

# PREDICT -------------------------------------------------
t0 = time.clock()
pred = elm.predict(testp)
t1 = time.clock()
te = t1-t0

# RESULT --------------------------------------------------
for p in pred:
    i = 0
    for v in p:
        i += 1
        if 1.0 - abs(v) < 0.00001:
            print "people id:", i
            break

print "training took", tr*1000000, "ns"
print "testing took", te*1000000, "ns"
開發者ID:minhazul-haque,項目名稱:py-facerec-elm,代碼行數:32,代碼來源:facerec_elm.py

示例7: float

# 需要導入模塊: from hpelm import ELM [as 別名]
# 或者: from hpelm.ELM import predict [as 別名]
    plt.plot(t_real[0:len_learn],sampled_data_FC1[0:len_learn,1],'g-',markersize=8.0,linewidth=10.0,alpha=0.8)
    plt.plot(t_real[0:len_learn],sampled_data_FC1[0:len_learn,1],'b-',markersize=3.0,linewidth=3.0)
   # plt.plot(t_real[0:regressors_num],sampled_data_FC1[0:regressors_num,1],'r-',markersize=3.0,linewidth=3.0,dashes=[10, 6, 1, 6, 1, 6])
    train_out=train_out+3.5
    plt.plot(t_real[0:len_learn],train_out[0:len(train_out)],'r',markersize=3.0,linewidth=3.0,dashes=[10, 6, 1, 6, 1, 6])
    
    # plot the predict phase data
    plt.plot(t_real[len_learn-1:len_prognostics],sampled_data_FC1[len_learn-1:len_prognostics,1],'b-',markersize=3.0,linewidth=3.0)
    plt.plot(t_real[len_learn:len_prognostics],FC1_prognostics,'r',markersize=3.0,linewidth=3.0,dashes=[8, 4, 2, 4, 2, 4])
    # plt.ylim(3.1,3.5)
    # plt.plot(t_real[0:iterations],x_particle,'k.',markersize=0.5)
    plt.grid()
    plt.xlabel('real time')
    plt.ylabel('voltage')
    plt.title('ELM')
    plt.legend(['observation','real data','train_predict'])
    plt.show()


Yh = elm.predict(X_learn)

plt.plot(Y_learn,color='r',linewidth=3)
plt.plot(Yh,color='g',linewidth=1)
plt.show()

plot_prognostic(Yh)

acc = float(np.sum(Y_learn.argmax(1) == Yh.argmax(1))) / Y_learn.shape[0]
print "Iris dataset training error: %.1f%%" % (100-acc*100)

開發者ID:Newsteinwell,項目名稱:write-code,代碼行數:31,代碼來源:elm_test.py

示例8: ELM

# 需要導入模塊: from hpelm import ELM [as 別名]
# 或者: from hpelm.ELM import predict [as 別名]
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Created on Sun Oct 19 16:29:09 2014

@author: akusok
"""

import numpy as np
import os
from hpelm import ELM

curdir = os.path.dirname(__file__)
pX = os.path.join(curdir, "../datasets/Unittest-Iris/iris_data.txt")
pY = os.path.join(curdir, "../datasets/Unittest-Iris/iris_classes.txt")

X = np.loadtxt(pX)
Y = np.loadtxt(pY)

elm = ELM(4,3)
elm.add_neurons(15, "sigm")
elm.train(X, Y, "c")
Yh = elm.predict(X)
acc = float(np.sum(Y.argmax(1) == Yh.argmax(1))) / Y.shape[0]
print("Iris dataset training error: %.1f%%" % (100-acc*100))
開發者ID:akusok,項目名稱:hpelm,代碼行數:27,代碼來源:elm_naive.py


注:本文中的hpelm.ELM.predict方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。