當前位置: 首頁>>代碼示例>>Python>>正文


Python ELM.add_neurons方法代碼示例

本文整理匯總了Python中hpelm.ELM.add_neurons方法的典型用法代碼示例。如果您正苦於以下問題:Python ELM.add_neurons方法的具體用法?Python ELM.add_neurons怎麽用?Python ELM.add_neurons使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在hpelm.ELM的用法示例。


在下文中一共展示了ELM.add_neurons方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_CrossValidation_ReturnsError

# 需要導入模塊: from hpelm import ELM [as 別名]
# 或者: from hpelm.ELM import add_neurons [as 別名]
 def test_CrossValidation_ReturnsError(self):
     model = ELM(5, 2)
     model.add_neurons(10, 'tanh')
     X = np.random.rand(100, 5)
     T = np.random.rand(100, 2)
     err = model.train(X, T, 'CV', k=3)
     self.assertIsNotNone(err)
開發者ID:akusok,項目名稱:hpelm,代碼行數:9,代碼來源:unittest_elm.py

示例2: HPELMNN

# 需要導入模塊: from hpelm import ELM [as 別名]
# 或者: from hpelm.ELM import add_neurons [as 別名]
class HPELMNN(Classifier):
    
    def __init__(self):
        self.__hpelm = None
    
    @staticmethod
    def name():
        return "hpelmnn"

    def train(self, X, Y, class_number=-1):
        class_count = max(np.unique(Y).size, class_number)
        feature_count = X.shape[1]
        self.__hpelm = ELM(feature_count, class_count, 'wc')
        self.__hpelm.add_neurons(feature_count, "sigm")

        Y_arr = Y.reshape(-1, 1)
        enc = OneHotEncoder()
        enc.fit(Y_arr)
        Y_OHE = enc.transform(Y_arr).toarray()

        out_fd = sys.stdout
        sys.stdout = open(os.devnull, 'w')
        self.__hpelm.train(X, Y_OHE)
        sys.stdout = out_fd

    def predict(self, X):
        Y_predicted = self.__hpelm.predict(X)
        return Y_predicted
開發者ID:grzesiekzajac,項目名稱:ziwm,代碼行數:30,代碼來源:hpelmnn.py

示例3: test_MultiLabelClassification_Works

# 需要導入模塊: from hpelm import ELM [as 別名]
# 或者: from hpelm.ELM import add_neurons [as 別名]
 def test_MultiLabelClassification_Works(self):
     elm = ELM(1, 2)
     X = np.array([1, 2, 3, 4, 5, 6])
     T = np.array([[1, 1], [1, 0], [1, 0], [0, 1], [0, 1], [1, 1]])
     elm.add_neurons(1, "lin")
     elm.train(X, T, 'ml')
     elm.train(X, T, 'mc')
開發者ID:IstanbulBoy,項目名稱:hpelm,代碼行數:9,代碼來源:test_correctness.py

示例4: test_ELM_SaveLoad

# 需要導入模塊: from hpelm import ELM [as 別名]
# 或者: from hpelm.ELM import add_neurons [as 別名]
 def test_ELM_SaveLoad(self):
     X = np.array([1, 2, 3, 1, 2, 3])
     T = np.array([[1, 0], [1, 0], [1, 0], [0, 1], [0, 1], [0, 1]])
     elm = ELM(1, 2, precision='32', norm=0.02)
     elm.add_neurons(1, "lin")
     elm.add_neurons(2, "tanh")
     elm.train(X, T, "wc", w=(0.7, 0.3))
     B1 = elm.nnet.get_B()
     try:
         f, fname = tempfile.mkstemp()
         elm.save(fname)
         elm2 = ELM(3, 3)
         elm2.load(fname)
     finally:
         os.close(f)
     self.assertEqual(elm2.nnet.inputs, 1)
     self.assertEqual(elm2.nnet.outputs, 2)
     self.assertEqual(elm2.classification, "wc")
     self.assertIs(elm.precision, np.float32)
     self.assertIs(elm2.precision, np.float64)  # precision has changed
     np.testing.assert_allclose(np.array([0.7, 0.3]), elm2.wc)
     np.testing.assert_allclose(0.02, elm2.nnet.norm)
     np.testing.assert_allclose(B1, elm2.nnet.get_B())
     self.assertEqual(elm2.nnet.get_neurons()[0][1], "lin")
     self.assertEqual(elm2.nnet.get_neurons()[1][1], "tanh")
開發者ID:IstanbulBoy,項目名稱:hpelm,代碼行數:27,代碼來源:test_correctness.py

示例5: test_24_AddNeurons_InitDefault_BiasWNotZero

# 需要導入模塊: from hpelm import ELM [as 別名]
# 或者: from hpelm.ELM import add_neurons [as 別名]
 def test_24_AddNeurons_InitDefault_BiasWNotZero(self):
     elm = ELM(2, 1)
     elm.add_neurons(3, "sigm")
     W = elm.neurons[0][2]
     bias = elm.neurons[0][3]
     self.assertGreater(np.sum(np.abs(W)), 0.001)
     self.assertGreater(np.sum(np.abs(bias)), 0.001)
開發者ID:ExtremeLearningMachines,項目名稱:hpelm0.6.6,代碼行數:9,代碼來源:test_correctness.py

示例6: test_TrainWithBatch_OverwritesBatch

# 需要導入模塊: from hpelm import ELM [as 別名]
# 或者: from hpelm.ELM import add_neurons [as 別名]
 def test_TrainWithBatch_OverwritesBatch(self):
     elm = ELM(1, 1, batch=123)
     X = np.array([1, 2, 3])
     T = np.array([1, 2, 3])
     elm.add_neurons(1, "lin")
     elm.train(X, T, batch=234)
     self.assertEqual(234, elm.batch)
開發者ID:IstanbulBoy,項目名稱:hpelm,代碼行數:9,代碼來源:test_correctness.py

示例7: test_20_SLFN_AddTwoNeuronTypes_GotThem

# 需要導入模塊: from hpelm import ELM [as 別名]
# 或者: from hpelm.ELM import add_neurons [as 別名]
 def test_20_SLFN_AddTwoNeuronTypes_GotThem(self):
     elm = ELM(1, 1)
     elm.add_neurons(1, "lin")
     elm.add_neurons(1, "sigm")
     self.assertEquals(2, len(elm.neurons))
     ntypes = [nr[0] for nr in elm.neurons]
     self.assertIn("lin", ntypes)
     self.assertIn("sigm", ntypes)
開發者ID:ExtremeLearningMachines,項目名稱:hpelm0.6.6,代碼行數:10,代碼來源:test_correctness.py

示例8: test_MultiLabelClassError_Works

# 需要導入模塊: from hpelm import ELM [as 別名]
# 或者: from hpelm.ELM import add_neurons [as 別名]
 def test_MultiLabelClassError_Works(self):
     X = np.array([1, 2, 3])
     T = np.array([[0, 1], [1, 1], [1, 0]])
     Y = np.array([[0.4, 0.6], [0.8, 0.6], [1, 1]])
     elm = ELM(1, 2, classification="ml")
     elm.add_neurons(1, "lin")
     e = elm.error(T, Y)
     np.testing.assert_allclose(e, 1.0 / 6)
開發者ID:IstanbulBoy,項目名稱:hpelm,代碼行數:10,代碼來源:test_correctness.py

示例9: test_AddNeurons_WorksWithLongType

# 需要導入模塊: from hpelm import ELM [as 別名]
# 或者: from hpelm.ELM import add_neurons [as 別名]
 def test_AddNeurons_WorksWithLongType(self):
     if sys.version_info[0] == 2:
         ltype = long
     else:
         ltype = int
     model = ELM(3, 2)
     L = ltype(10)
     model.add_neurons(L, 'tanh')
開發者ID:akusok,項目名稱:hpelm,代碼行數:10,代碼來源:unittest_elm.py

示例10: test_WeightedClassError_Works

# 需要導入模塊: from hpelm import ELM [as 別名]
# 或者: from hpelm.ELM import add_neurons [as 別名]
 def test_WeightedClassError_Works(self):
     T = np.array([[0, 1], [0, 1], [1, 0]])
     Y = np.array([[0, 1], [0.4, 0.6], [0, 1]])
     # here class 0 is totally incorrect, and class 1 is totally correct
     w = (9, 1)
     elm = ELM(1, 2, classification="wc", w=w)
     elm.add_neurons(1, "lin")
     e = elm.error(T, Y)
     np.testing.assert_allclose(e, 0.9)
開發者ID:IstanbulBoy,項目名稱:hpelm,代碼行數:11,代碼來源:test_correctness.py

示例11: test_Classification_WorksCorreclty

# 需要導入模塊: from hpelm import ELM [as 別名]
# 或者: from hpelm.ELM import add_neurons [as 別名]
 def test_Classification_WorksCorreclty(self):
     elm = ELM(1, 2)
     X = np.array([-1, -0.6, -0.3, 0.3, 0.6, 1])
     T = np.array([[1, 0], [1, 0], [1, 0], [0, 1], [0, 1], [0, 1]])
     elm.add_neurons(1, "lin")
     elm.train(X, T, 'c')
     Y = elm.predict(X)
     self.assertGreater(Y[0, 0], Y[0, 1])
     self.assertLess(Y[5, 0], Y[5, 1])
開發者ID:IstanbulBoy,項目名稱:hpelm,代碼行數:11,代碼來源:test_correctness.py

示例12: test_25_AddNeurons_InitTwiceBiasW_CorrectlyMerged

# 需要導入模塊: from hpelm import ELM [as 別名]
# 或者: from hpelm.ELM import add_neurons [as 別名]
 def test_25_AddNeurons_InitTwiceBiasW_CorrectlyMerged(self):
     elm = ELM(2, 1)
     W1 = np.random.rand(2, 3)
     W2 = np.random.rand(2, 4)
     bias1 = np.random.rand(3,)
     bias2 = np.random.rand(4,)
     elm.add_neurons(3, "sigm", W1, bias1)
     elm.add_neurons(4, "sigm", W2, bias2)
     np.testing.assert_array_almost_equal(np.hstack((W1, W2)), elm.neurons[0][2])
     np.testing.assert_array_almost_equal(np.hstack((bias1, bias2)), elm.neurons[0][3])
開發者ID:ExtremeLearningMachines,項目名稱:hpelm0.6.6,代碼行數:12,代碼來源:test_correctness.py

示例13: test_WeightedClassification_ClassWithLargerWeightWins

# 需要導入模塊: from hpelm import ELM [as 別名]
# 或者: from hpelm.ELM import add_neurons [as 別名]
 def test_WeightedClassification_ClassWithLargerWeightWins(self):
     elm = ELM(1, 2)
     X = np.array([1, 2, 3, 1, 2, 3])
     T = np.array([[1, 0], [1, 0], [1, 0], [0, 1], [0, 1], [0, 1]])
     elm.add_neurons(1, "lin")
     elm.train(X, T, 'wc', w=(1, 0.1))
     Y = elm.predict(X)
     self.assertGreater(Y[0, 0], Y[0, 1])
     self.assertGreater(Y[1, 0], Y[1, 1])
     self.assertGreater(Y[2, 0], Y[2, 1])
開發者ID:IstanbulBoy,項目名稱:hpelm,代碼行數:12,代碼來源:test_correctness.py

示例14: build_ELM_encoder

# 需要導入模塊: from hpelm import ELM [as 別名]
# 或者: from hpelm.ELM import add_neurons [as 別名]
def build_ELM_encoder(xinput, target, num_neurons):


    elm = ELM(xinput.shape[1], target.shape[1])
    elm.add_neurons(num_neurons, "sigm")
    elm.add_neurons(num_neurons, "lin")
    #elm.add_neurons(num_neurons, "rbf_l1")
    elm.train(xinput, target, "r")
    ypred = elm.predict(xinput)
    print "mse error", elm.error(ypred, target)
    return elm, ypred
開發者ID:btekgit,項目名稱:mitosisdetection,代碼行數:13,代碼來源:elmTest.py

示例15: test_LOOandOP_CanSelectMoreThanOneNeuron

# 需要導入模塊: from hpelm import ELM [as 別名]
# 或者: from hpelm.ELM import add_neurons [as 別名]
 def test_LOOandOP_CanSelectMoreThanOneNeuron(self):
     X = np.random.rand(100, 5)
     T = np.random.rand(100, 2)
     for _ in range(10):
         model = ELM(5, 2)
         model.add_neurons(5, 'lin')
         model.train(X, T, 'LOO', 'OP')
         max2 = model.nnet.L
         if max2 > 1:
             break
     self.assertGreater(max2, 1)
開發者ID:akusok,項目名稱:hpelm,代碼行數:13,代碼來源:unittest_elm.py


注:本文中的hpelm.ELM.add_neurons方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。