當前位置: 首頁>>代碼示例>>Python>>正文


Python CyClpSimplex.primal方法代碼示例

本文整理匯總了Python中cylp.cy.CyClpSimplex.primal方法的典型用法代碼示例。如果您正苦於以下問題:Python CyClpSimplex.primal方法的具體用法?Python CyClpSimplex.primal怎麽用?Python CyClpSimplex.primal使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在cylp.cy.CyClpSimplex的用法示例。


在下文中一共展示了CyClpSimplex.primal方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_removeVar

# 需要導入模塊: from cylp.cy import CyClpSimplex [as 別名]
# 或者: from cylp.cy.CyClpSimplex import primal [as 別名]
    def test_removeVar(self):
        m = self.model
        x = self.x
        A = self.A
        B = self.B
        D = self.D
        b = self.b

        y = m.addVariable('y', 4)
        z = m.addVariable('z', 5)

        m.addConstraint(x >= 0)
        m.addConstraint(y >= -10)
        m.addConstraint(z >= -10)

        m.addConstraint(A * x + D * y + B * z <= b)
        m += x[0] + y[0] + z[0] >= 1.12

        m.objective = x.sum() + y.sum() + z.sum()
        s = CyClpSimplex(m)
        s.primal()

        self.assertTrue('y' in s.primalVariableSolution.keys())

        m.removeVariable('y')
        s = CyClpSimplex(m)
        s.primal()
        self.assertTrue('y' not in s.primalVariableSolution.keys())
開發者ID:HerrKevin,項目名稱:CyLP,代碼行數:30,代碼來源:test_modeling.py

示例2: test_Sparse

# 需要導入模塊: from cylp.cy import CyClpSimplex [as 別名]
# 或者: from cylp.cy.CyClpSimplex import primal [as 別名]
    def test_Sparse(self):
        model = CyLPModel()

        x = model.addVariable('x', 3)
        y = model.addVariable('y', 2)

        A = csc_matrixPlus(([1, 2, 1, 1], ([0, 0, 1, 1], [0, 1, 0, 2])),  shape=(2, 3))
        B = csc_matrixPlus(([1, 1], ([0, 1], [0, 2])),  shape=(2, 3))
        D = np.matrix([[1., 2.],[0, 1]])
        a = CyLPArray([5, 2.5])
        b = CyLPArray([4.2, 3])
        x_u= CyLPArray([2., 3.5])

        model.addConstraint(A*x <= a)
        model.addConstraint(2 <= B * x + D * y <= b)
        model.addConstraint(y >= 0)
        model.addConstraint(1.1 <= x[1:3] <= x_u)

        c = CyLPArray([1., -2., 3.])
        model.objective = c * x + 2 * y[0] + 2 * y[1]


        s = CyClpSimplex(model)

        s.primal()
        sol = np.concatenate((s.primalVariableSolution['x'],
                              s.primalVariableSolution['y']))
        self.assertTrue((abs(sol -
                        np.array([0.2, 2, 1.1, 0, 0.9]) ) <= 10**-6).all())
開發者ID:HerrKevin,項目名稱:CyLP,代碼行數:31,代碼來源:test_CyClpSimplex_CyLPModel.py

示例3: test

# 需要導入模塊: from cylp.cy import CyClpSimplex [as 別名]
# 或者: from cylp.cy.CyClpSimplex import primal [as 別名]
    def test(self):
        m = CyCoinModel()
        
        m.addVariable(3, np.array(
                        [0, 1, 2], np.int32),
                        np.array([1., 1., 1.], np.double), 0, 10, 5)

        m.addVariable(2, np.array(
                        [1,2], np.int32),
                        np.array([5, 2.], np.double), 0, 10, 2)

        # Add bound for the three constraints (we have two variables)
        m.setConstraintLower(0, 2.3)
        m.setConstraintLower(1, 4.5)
        m.setConstraintLower(0, 1.5)
        
        # Add a 4th constraint
        m.addConstraint(2, 
                            np.array([0, 1], np.int32), 
                            np.array([1., 1.], np.double), 2, 7)
        
        s = CyClpSimplex()
        # Load the problem from the CyCoinModel
        s.loadProblemFromCyCoinModel(m)
        
        s.primal()
         
        self.assertAlmostEqual(s.objectiveValue, 8.7, 7)
開發者ID:HerrKevin,項目名稱:CyLP,代碼行數:30,代碼來源:test_CyCoinModel.py

示例4: solve

# 需要導入模塊: from cylp.cy import CyClpSimplex [as 別名]
# 或者: from cylp.cy.CyClpSimplex import primal [as 別名]
def solve(filename, method):

    s = CyClpSimplex()
    s.readMps(filename)

    s.preSolve(feasibilityTolerance=10 ** -8)
    #s.useCustomPrimal(1)

    if method == 'd':
        pivot = DantzigPivot(s)
    elif method == 'l':
        pivot = LIFOPivot(s)
    elif method == 'm':
        pivot = MostFrequentPivot(s)
    elif method == 'p':
        pivot = PositiveEdgePivot(s)
    else:
        print 'Unkown solution method.'
        sys.exit(1)

    s.setPivotMethod(pivot)

    #s.setPerturbation(50)

    start = clock()
    s.primal()
    print 'Problem solved in %g seconds.' % (clock() - start)
    return s.objectiveValue
開發者ID:HerrKevin,項目名稱:CyLP,代碼行數:30,代碼來源:PySolve.py

示例5: test_removeVar2

# 需要導入模塊: from cylp.cy import CyClpSimplex [as 別名]
# 或者: from cylp.cy.CyClpSimplex import primal [as 別名]
    def test_removeVar2(self):
        s = CyClpSimplex()
        fp = os.path.join(currentFilePath, '../../input/p0033.mps')
        s.extractCyLPModel(fp)
        y = s.addVariable('y', 3)
        s.primal()

        x = s.getVarByName('x')
        s.addConstraint(x[1] +  y[1] >= 1.2)
        #s.primal()
        s.removeVariable('x')
        s.primal()
        s = s.primalVariableSolution
        self.assertTrue((s['y'] - np.array([0, 1.2, 0]) <= 10**-6).all())
開發者ID:HerrKevin,項目名稱:CyLP,代碼行數:16,代碼來源:test_modeling.py

示例6: test_1

# 需要導入模塊: from cylp.cy import CyClpSimplex [as 別名]
# 或者: from cylp.cy.CyClpSimplex import primal [as 別名]
    def test_1(self):
        """simplest QP test"""
        s = CyClpSimplex()
        s.readMps(join(currentFilePath, '../input/hs35.qps'))
        #self.assertTrue(abs(cbcModel.objectiveValue - 3089.0) < 10 ** -6)
        
        #print s.Hessian.todense()

        p = WolfePivot(s)
        s.setPivotMethod(p)

        s.primal()
        print s.primalVariableSolution
        print s.objectiveValue
開發者ID:HerrKevin,項目名稱:CyLP,代碼行數:16,代碼來源:test_QP.py

示例7: test_multiDim

# 需要導入模塊: from cylp.cy import CyClpSimplex [as 別名]
# 或者: from cylp.cy.CyClpSimplex import primal [as 別名]
    def test_multiDim(self):
        from cylp.cy import CyClpSimplex
        from cylp.py.modeling.CyLPModel import CyLPArray
        s = CyClpSimplex()
        x = s.addVariable('x', (5, 3, 6))
        s += 2 * x[2, :, 3].sum() + 3 * x[0, 1, :].sum() >= 5

        s += 0 <= x <= 1
        c = CyLPArray(range(18))

        s.objective = c * x[2, :, :] + c * x[0, :, :]
        s.primal()
        sol = s.primalVariableSolution['x']
        self.assertTrue(abs(sol[0, 1, 0] - 1) <= 10**-6)
        self.assertTrue(abs(sol[2, 0, 3] - 1) <= 10**-6)
開發者ID:HerrKevin,項目名稱:CyLP,代碼行數:17,代碼來源:test_CyClpSimplex_CyLPModel.py

示例8: test_ArrayIndexing

# 需要導入模塊: from cylp.cy import CyClpSimplex [as 別名]
# 或者: from cylp.cy.CyClpSimplex import primal [as 別名]
    def test_ArrayIndexing(self):
        from cylp.cy import CyClpSimplex
        from cylp.py.modeling.CyLPModel import CyLPArray
        s = CyClpSimplex()
        x = s.addVariable('x', (5, 3, 6))
        s += 2 * x[2, :, 3].sum() + 3 * x[0, 1, :].sum() >= 5


        s += x[1, 2, [0, 3, 5]] - x[2, 1, np.array([1, 2, 4])] == 1
        s += 0 <= x <= 1
        c = CyLPArray(range(18))

        s.objective = c * x[2, :, :] + c * x[0, :, :]
        s.primal()
        sol = s.primalVariableSolution['x']
        self.assertTrue(abs(sol[1, 2, 0] - 1) <= 10**-6)
        self.assertTrue(abs(sol[1, 2, 3] - 1) <= 10**-6)
        self.assertTrue(abs(sol[1, 2, 5] - 1) <= 10**-6)
開發者ID:HerrKevin,項目名稱:CyLP,代碼行數:20,代碼來源:test_CyClpSimplex_CyLPModel.py

示例9: test_onlyBounds2

# 需要導入模塊: from cylp.cy import CyClpSimplex [as 別名]
# 或者: from cylp.cy.CyClpSimplex import primal [as 別名]
    def test_onlyBounds2(self):
        s = CyClpSimplex()

        x = s.addVariable('x', 3)
        y = s.addVariable('y', 2)

        s += y >= 1
        s += 2 <= x <= 4

        c = CyLPArray([1., -2., 3.])
        s.objective = c * x + 2 * y[0] + 2 * y[1]

        s.primal()

        sol = np.concatenate((s.primalVariableSolution['x'],
                              s.primalVariableSolution['y']))
        self.assertTrue((abs(sol -
                        np.array([2, 4, 2, 1, 1]) ) <= 10**-6).all())
開發者ID:HerrKevin,項目名稱:CyLP,代碼行數:20,代碼來源:test_CyClpSimplex_CyLPModel.py

示例10: test2

# 需要導入模塊: from cylp.cy import CyClpSimplex [as 別名]
# 或者: from cylp.cy.CyClpSimplex import primal [as 別名]
    def test2(self):
        'Same as test1, but use cylp indirectly.'
        s = CyClpSimplex()

        x = s.addVariable('x', 3)

        A = np.matrix([[1,2,3], [1,1,1]])
        b = CyLPArray([5, 3])

        s += A * x == b
        s += x >= 0

        s.objective = 1 * x[0] + 1 * x[1] + 1.1 * x[2]

        # Solve it a first time
        s.primal()
        sol = s.primalVariableSolution['x']
        self.assertTrue((abs(sol - np.array([1,2,0]) ) <= 10**-6).all())
        # Add a cut
        s.addConstraint(x[0] >= 1.1)
        s.primal()
        sol = s.primalVariableSolution['x']
        self.assertTrue((abs(sol - np.array([1.1, 1.8, 0.1]) ) <= 10**-6).all())

        # Change the objective function
        c = csr_matrixPlus([[1, 10, 1.1]]).T
        s.objective = c.T * x
        s.primal()
        sol = s.primalVariableSolution['x']
        self.assertTrue((abs(sol - np.array([2, 0, 1]) ) <= 10**-6).all())
開發者ID:HerrKevin,項目名稱:CyLP,代碼行數:32,代碼來源:test_CyClpSimplex_CyLPModel.py

示例11: test

# 需要導入模塊: from cylp.cy import CyClpSimplex [as 別名]
# 或者: from cylp.cy.CyClpSimplex import primal [as 別名]
    def test(self):
        model = CyLPModel()

        x = model.addVariable('x', 3)

        A = np.matrix([[1,2,3], [1,1,1]])
        b = CyLPArray([5, 3])

        model.addConstraint(A * x == b)
        model.addConstraint(x >= 0)

        model.objective = 1*x[0]  + 1*x[1] + 1.1 * x[2]

        # Solve it a first time
        s = CyClpSimplex(model)
        s.primal()
        sol = s.primalVariableSolution['x']
        self.assertTrue((abs(sol - np.array([1,2,0]) ) <= 10**-6).all())
        # Add a cut
        s.addConstraint(x[0] >= 1.1)
        s.primal()
        sol = s.primalVariableSolution['x']
        self.assertTrue((abs(sol - np.array([1.1, 1.8, 0.1]) ) <= 10**-6).all())

        # Change the objective function
        c = csr_matrixPlus([[1, 10, 1.1]]).T
        s.objective = c.T * x
        s.primal()
        sol = s.primalVariableSolution['x']
        self.assertTrue((abs(sol - np.array([2, 0, 1]) ) <= 10**-6).all())
開發者ID:HerrKevin,項目名稱:CyLP,代碼行數:32,代碼來源:test_CyClpSimplex_CyLPModel.py

示例12: test_removeConst

# 需要導入模塊: from cylp.cy import CyClpSimplex [as 別名]
# 或者: from cylp.cy.CyClpSimplex import primal [as 別名]
    def test_removeConst(self):

        m = self.model
        x = self.x
        A = self.A
        b = self.b


        m.addConstraint(x >= 0)

        m.addConstraint(A * x == b)

        m.addConstraint(x[1:3].sum() >= 1, 'rr')

        m.objective = x.sum()
        s = CyClpSimplex(m)
        s.primal()
        self.assertAlmostEqual(s.primalVariableSolution['x'][1], 1, 7)

        s.removeConstraint('rr')
        s.primal()
        self.assertAlmostEqual(s.primalVariableSolution['x'][1], 0, 7)
開發者ID:HerrKevin,項目名稱:CyLP,代碼行數:24,代碼來源:test_modeling.py

示例13: TestCyClpSimplex

# 需要導入模塊: from cylp.cy import CyClpSimplex [as 別名]
# 或者: from cylp.cy.CyClpSimplex import primal [as 別名]
class TestCyClpSimplex(unittest.TestCase):

    def setUp(self):
        self.s = CyClpSimplex()
        self.s.readMps(join(currentFilePath, '../input/p0033.mps'))

    def test_PE(self):
        #pivot = PositiveEdgePivot(self.s)
        self.s.setPivotMethod(PositiveEdgePivot(self.s))
        self.s.primal()
        self.assertEqual(round(self.s.objectiveValue, 4), 2520.5717)

    def test_Dantzig(self):
        #pivot = DantzigPivot(self.s)
        self.s.setPivotMethod(DantzigPivot(self.s))
        self.s.primal()
        self.assertEqual(round(self.s.objectiveValue, 4), 2520.5717)

    def test_LIFO(self):
        #pivot = LIFOPivot(self.s)
        self.s.setPivotMethod(LIFOPivot(self.s))
        self.s.primal()
        self.assertEqual(round(self.s.objectiveValue, 4), 2520.5717)

    def test_MostFrequent(self):
        #pivot = MostFrequentPivot(self.s)
        self.s.setPivotMethod(MostFrequentPivot(self.s))
        self.s.primal()
        self.assertEqual(round(self.s.objectiveValue, 4), 2520.5717)

    def test_initialSolve(self):
        self.s.initialSolve()
        self.assertEqual(round(self.s.objectiveValue, 4), 2520.5717)

    def test_initialPrimalSolve(self):
        self.s.initialPrimalSolve()
        self.assertEqual(round(self.s.objectiveValue, 4), 2520.5717)

    def test_initialDualSolve(self):
        self.s.initialDualSolve()
        self.assertEqual(round(self.s.objectiveValue, 4), 2520.5717)

    def test_direction(self):
        self.assertEqual(self.s.optimizationDirection, 'min')
        self.s.optimizationDirection = 'max'
        self.assertEqual(self.s.optimizationDirection, 'max')
開發者ID:HerrKevin,項目名稱:CyLP,代碼行數:48,代碼來源:test_CyClpSimplex.py

示例14: saveWeights

# 需要導入模塊: from cylp.cy import CyClpSimplex [as 別名]
# 或者: from cylp.cy.CyClpSimplex import primal [as 別名]
            #del rc2
            return  indicesToConsider[ind]
        return -1

    def saveWeights(self, model, mode):
        self.clpModel = model

    def isPivotAcceptable(self):
        return True


def getMpsExample():
    import os
    import inspect
    cylpDir = os.environ['CYLP_SOURCE_DIR']
    return os.path.join(cylpDir, 'cylp', 'input', 'p0033.mps')


if __name__ == "__main__":
    if len(sys.argv) == 1:
        import doctest
        doctest.testmod()
    else:
        from cylp.cy import CyClpSimplex
        from cylp.py.pivots import DantzigPivot
        s = CyClpSimplex()
        s.readMps(sys.argv[1])
        pivot = DantzigPivot(s)
        s.setPivotMethod(pivot)
        s.primal()
開發者ID:HerrKevin,項目名稱:CyLP,代碼行數:32,代碼來源:DantzigPivot.py

示例15: solve

# 需要導入模塊: from cylp.cy import CyClpSimplex [as 別名]
# 或者: from cylp.cy.CyClpSimplex import primal [as 別名]
    def solve(self, objective, constraints, cached_data,
              warm_start, verbose, solver_opts):
        """Returns the result of the call to the solver.

        Parameters
        ----------
        objective : LinOp
            The canonicalized objective.
        constraints : list
            The list of canonicalized cosntraints.
        cached_data : dict
            A map of solver name to cached problem data.
        warm_start : bool
            Not used.
        verbose : bool
            Should the solver print output?
        solver_opts : dict
            Additional arguments for the solver.

        Returns
        -------
        tuple
            (status, optimal value, primal, equality dual, inequality dual)
        """
        # Import basic modelling tools of cylp
        from cylp.cy import CyClpSimplex
        from cylp.py.modeling.CyLPModel import CyLPArray

        # Get problem data
        data = self.get_problem_data(objective, constraints, cached_data)

        c = data[s.C]
        b = data[s.B]
        A = data[s.A]
        dims = data[s.DIMS]

        n = c.shape[0]

        solver_cache = cached_data[self.name()]

        # Problem
        model = CyClpSimplex()

        # Variables
        x = model.addVariable('x', n)

        if self.is_mip(data):
            for i in data[s.BOOL_IDX]:
                model.setInteger(x[i])
            for i in data[s.INT_IDX]:
                model.setInteger(x[i])

        # Constraints
        # eq
        model += A[0:dims[s.EQ_DIM], :] * x == b[0:dims[s.EQ_DIM]]

        # leq
        leq_start = dims[s.EQ_DIM]
        leq_end = dims[s.EQ_DIM] + dims[s.LEQ_DIM]
        model += A[leq_start:leq_end, :] * x <= b[leq_start:leq_end]

        # no boolean vars available in cbc -> model as int + restrict to [0,1]
        if self.is_mip(data):
            for i in data[s.BOOL_IDX]:
                model += 0 <= x[i] <= 1

        # Objective
        model.objective = c

        # Build model & solve
        status = None
        if self.is_mip(data):
            cbcModel = model.getCbcModel()  # need to convert model
            if not verbose:
                cbcModel.logLevel = 0

            # Add cut-generators (optional)
            for cut_name, cut_func in six.iteritems(self.SUPPORTED_CUT_GENERATORS):
                if cut_name in solver_opts and solver_opts[cut_name]:
                    module = importlib.import_module("cylp.cy.CyCgl")
                    funcToCall = getattr(module, cut_func)
                    cut_gen = funcToCall()
                    cbcModel.addCutGenerator(cut_gen, name=cut_name)

            # solve
            status = cbcModel.branchAndBound()
        else:
            if not verbose:
                model.logLevel = 0
            status = model.primal()  # solve

        results_dict = {}
        results_dict["status"] = status

        if self.is_mip(data):
            results_dict["x"] = cbcModel.primalVariableSolution['x']
            results_dict["obj_value"] = cbcModel.objectiveValue
        else:
            results_dict["x"] = model.primalVariableSolution['x']
            results_dict["obj_value"] = model.objectiveValue
#.........這裏部分代碼省略.........
開發者ID:Adarsh-Barik,項目名稱:cvxpy,代碼行數:103,代碼來源:cbc_intf.py


注:本文中的cylp.cy.CyClpSimplex.primal方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。