本文整理匯總了Python中cylp.cy.CyClpSimplex類的典型用法代碼示例。如果您正苦於以下問題:Python CyClpSimplex類的具體用法?Python CyClpSimplex怎麽用?Python CyClpSimplex使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了CyClpSimplex類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test
def test(self):
model = CyLPModel()
x = model.addVariable('x', 3)
A = np.matrix([[1,2,3], [1,1,1]])
b = CyLPArray([5, 3])
model.addConstraint(A * x == b)
model.addConstraint(x >= 0)
model.objective = 1*x[0] + 1*x[1] + 1.1 * x[2]
# Solve it a first time
s = CyClpSimplex(model)
s.primal()
sol = s.primalVariableSolution['x']
self.assertTrue((abs(sol - np.array([1,2,0]) ) <= 10**-6).all())
# Add a cut
s.addConstraint(x[0] >= 1.1)
s.primal()
sol = s.primalVariableSolution['x']
self.assertTrue((abs(sol - np.array([1.1, 1.8, 0.1]) ) <= 10**-6).all())
# Change the objective function
c = csr_matrixPlus([[1, 10, 1.1]]).T
s.objective = c.T * x
s.primal()
sol = s.primalVariableSolution['x']
self.assertTrue((abs(sol - np.array([2, 0, 1]) ) <= 10**-6).all())
示例2: test
def test(self):
m = CyCoinModel()
m.addVariable(3, np.array(
[0, 1, 2], np.int32),
np.array([1., 1., 1.], np.double), 0, 10, 5)
m.addVariable(2, np.array(
[1,2], np.int32),
np.array([5, 2.], np.double), 0, 10, 2)
# Add bound for the three constraints (we have two variables)
m.setConstraintLower(0, 2.3)
m.setConstraintLower(1, 4.5)
m.setConstraintLower(0, 1.5)
# Add a 4th constraint
m.addConstraint(2,
np.array([0, 1], np.int32),
np.array([1., 1.], np.double), 2, 7)
s = CyClpSimplex()
# Load the problem from the CyCoinModel
s.loadProblemFromCyCoinModel(m)
s.primal()
self.assertAlmostEqual(s.objectiveValue, 8.7, 7)
示例3: test_Sparse
def test_Sparse(self):
model = CyLPModel()
x = model.addVariable('x', 3)
y = model.addVariable('y', 2)
A = csc_matrixPlus(([1, 2, 1, 1], ([0, 0, 1, 1], [0, 1, 0, 2])), shape=(2, 3))
B = csc_matrixPlus(([1, 1], ([0, 1], [0, 2])), shape=(2, 3))
D = np.matrix([[1., 2.],[0, 1]])
a = CyLPArray([5, 2.5])
b = CyLPArray([4.2, 3])
x_u= CyLPArray([2., 3.5])
model.addConstraint(A*x <= a)
model.addConstraint(2 <= B * x + D * y <= b)
model.addConstraint(y >= 0)
model.addConstraint(1.1 <= x[1:3] <= x_u)
c = CyLPArray([1., -2., 3.])
model.objective = c * x + 2 * y[0] + 2 * y[1]
s = CyClpSimplex(model)
s.primal()
sol = np.concatenate((s.primalVariableSolution['x'],
s.primalVariableSolution['y']))
self.assertTrue((abs(sol -
np.array([0.2, 2, 1.1, 0, 0.9]) ) <= 10**-6).all())
示例4: QPModel
def QPModel(self, addW=False):
A = self.A
c = self.c
s = CyClpSimplex()
x = s.addVariable('x', self.nCols)
if addW:
w = s.addVariable('w', self.nCols)
s += A * x >= 1
n = self.nCols
if not addW:
s += 0 <= x <= 1
else:
s += x + w == 1
s += 0 <= w <= 1
## s += -1 <= x <= 1
s.objective = c * x
if addW:
G = sparse.lil_matrix((2*n, 2*n))
for i in xrange(n/2, n): #xrange(n-1):
G[i, i] = 1
G[2*n-1, 2*n-1] = 10**-10
else:
G = sparse.lil_matrix((n, n))
for i in xrange(n/2, n): #xrange(n-1):
G[i, i] = 1
s.Hessian = G
return s
示例5: solve
def solve(filename, method):
s = CyClpSimplex()
s.readMps(filename)
s.preSolve(feasibilityTolerance=10 ** -8)
#s.useCustomPrimal(1)
if method == 'd':
pivot = DantzigPivot(s)
elif method == 'l':
pivot = LIFOPivot(s)
elif method == 'm':
pivot = MostFrequentPivot(s)
elif method == 'p':
pivot = PositiveEdgePivot(s)
else:
print 'Unkown solution method.'
sys.exit(1)
s.setPivotMethod(pivot)
#s.setPerturbation(50)
start = clock()
s.primal()
print 'Problem solved in %g seconds.' % (clock() - start)
return s.objectiveValue
示例6: model
def model(self):
A = self.A
c = self.c
s = CyClpSimplex()
x = s.addVariable('x', self.nCols)
s += A * x >= 1
s += 0 <= x <= 1
s.objective = c * x
return s
示例7: test_multiDim
def test_multiDim(self):
from cylp.cy import CyClpSimplex
from cylp.py.modeling.CyLPModel import CyLPArray
s = CyClpSimplex()
x = s.addVariable('x', (5, 3, 6))
s += 2 * x[2, :, 3].sum() + 3 * x[0, 1, :].sum() >= 5
s += 0 <= x <= 1
c = CyLPArray(range(18))
s.objective = c * x[2, :, :] + c * x[0, :, :]
s.primal()
sol = s.primalVariableSolution['x']
self.assertTrue(abs(sol[0, 1, 0] - 1) <= 10**-6)
self.assertTrue(abs(sol[2, 0, 3] - 1) <= 10**-6)
示例8: TestCyCoinIndexedVector
class TestCyCoinIndexedVector(unittest.TestCase):
def setUp(self):
self.a = np.array([1, 10.5, -11.3, 100, -50.5, 20], dtype=np.double)
self.a2 = np.array([1000, 10.5, -11.3, 100, -50.5, 20], dtype=np.double)
self.s = CyClpSimplex()
# def test_gen(self):
# w = np.array([3], dtype=np.int32)
# self.assertEqual(self.s.argWeightedMax(self.a, w, 0.1), 5)
#
# def test_empty(self):
# w = np.array([], dtype=np.int32)
# self.assertEqual(self.s.argWeightedMax(np.array([]), w, 0.1), 0)
#
# def test_first(self):
# w = np.array([0, 2], dtype=np.int32)
# self.assertEqual(self.s.argWeightedMax(self.a, w, 99), 3)
# self.assertEqual(self.s.argWeightedMax(self.a, w, 100), 0)
def test_argMax4_1(self):
w_ind = np.array([0, 2, 5], dtype=np.int32)
self.assertEqual(self.s.argWeightedMax(self.a, 0, 100, w_ind), 5)
def test_argMax4_2(self):
w_ind = np.array([0, 2, 5], dtype=np.int32)
w = np.array([1.5, -10, 4], dtype=np.double)
self.assertEqual(self.s.argWeightedMax(self.a, 0, w, w_ind), 2)
def test_argMax4_3(self):
w_ind = np.array([0, 8, 21], dtype=np.int32)
a_ind = np.array([2, 5, 8, 10, 20, 21] , dtype=np.int32)
self.assertEqual(self.s.argWeightedMax(self.a, a_ind, 5.1, w_ind), 5)
def test_argMax4_4(self):
w_ind = np.array([0, 8, 21], dtype=np.int32)
w = np.array([100, -10, 4], dtype=np.double)
a_ind = np.array([2, 5, 8, 10, 20, 21] , dtype=np.int32)
self.assertEqual(self.s.argWeightedMax(self.a, a_ind, w, w_ind), 2)
def test_argMax_5(self):
w_ind = np.array([2, 7, 100], dtype=np.int32)
w = np.array([100, -10, 4], dtype=np.double)
a_ind = np.array([2, 5, 8, 10, 20, 21] , dtype=np.int32)
self.assertEqual(self.s.argWeightedMax(self.a2, a_ind, 10, w_ind), 0)
示例9: test_onlyBounds2
def test_onlyBounds2(self):
s = CyClpSimplex()
x = s.addVariable('x', 3)
y = s.addVariable('y', 2)
s += y >= 1
s += 2 <= x <= 4
c = CyLPArray([1., -2., 3.])
s.objective = c * x + 2 * y[0] + 2 * y[1]
s.primal()
sol = np.concatenate((s.primalVariableSolution['x'],
s.primalVariableSolution['y']))
self.assertTrue((abs(sol -
np.array([2, 4, 2, 1, 1]) ) <= 10**-6).all())
示例10: test_ArrayIndexing
def test_ArrayIndexing(self):
from cylp.cy import CyClpSimplex
from cylp.py.modeling.CyLPModel import CyLPArray
s = CyClpSimplex()
x = s.addVariable('x', (5, 3, 6))
s += 2 * x[2, :, 3].sum() + 3 * x[0, 1, :].sum() >= 5
s += x[1, 2, [0, 3, 5]] - x[2, 1, np.array([1, 2, 4])] == 1
s += 0 <= x <= 1
c = CyLPArray(range(18))
s.objective = c * x[2, :, :] + c * x[0, :, :]
s.primal()
sol = s.primalVariableSolution['x']
self.assertTrue(abs(sol[1, 2, 0] - 1) <= 10**-6)
self.assertTrue(abs(sol[1, 2, 3] - 1) <= 10**-6)
self.assertTrue(abs(sol[1, 2, 5] - 1) <= 10**-6)
示例11: test_removeVar
def test_removeVar(self):
m = self.model
x = self.x
A = self.A
B = self.B
D = self.D
b = self.b
y = m.addVariable('y', 4)
z = m.addVariable('z', 5)
m.addConstraint(x >= 0)
m.addConstraint(y >= -10)
m.addConstraint(z >= -10)
m.addConstraint(A * x + D * y + B * z <= b)
m += x[0] + y[0] + z[0] >= 1.12
m.objective = x.sum() + y.sum() + z.sum()
s = CyClpSimplex(m)
s.primal()
self.assertTrue('y' in s.primalVariableSolution.keys())
m.removeVariable('y')
s = CyClpSimplex(m)
s.primal()
self.assertTrue('y' not in s.primalVariableSolution.keys())
示例12: test_variableBoundSubset
def test_variableBoundSubset(self):
m = self.model
x = self.x
y = m.addVariable('y', 4)
z = m.addVariable('z', 5)
A = self.A
b = self.b
k = m.addVariable('k', 2)
s = CyClpSimplex(m)
s.setColumnLowerSubset(np.array([1, 2], np.int32), np.array([3, 5, 8],
np.int32), np.array([3.2, 3.1, 2.2]))
self.assertTrue(s.variablesLower[3] != 3.2)
self.assertTrue(s.variablesLower[5] == 3.1)
self.assertTrue(s.variablesLower[8] == 2.2)
s.setColumnUpperSubset(np.array([0, 2], np.int32), np.array([0, 4, 10],
np.int32), np.array([3.2, 3.1, 2.2]))
self.assertTrue(s.variablesUpper[0] == 3.2)
self.assertTrue(s.variablesUpper[4] != 3.1)
self.assertTrue(s.variablesUpper[10] == 2.2)
示例13: read_instance
def read_instance(module_name = True, file_name = None):
if module_name:
lp = CyClpSimplex()
mip = ilib.import_module(module_name)
A = np.matrix(mip.A)
#print np.linalg.cond(A)
b = CyLPArray(mip.b)
#We assume variables have zero lower bounds
x_l = CyLPArray([0 for _ in range(mip.numVars)])
x = lp.addVariable('x', mip.numVars)
lp += x >= x_l
try:
x_u = CyLPArray(getattr(mip, 'x_u'))
lp += x <= x_u
except:
pass
lp += (A * x <= b if mip.sense[1] == '<=' else
A * x >= b)
c = CyLPArray(mip.c)
lp.objective = -c * x if mip.sense[0] == 'Max' else c * x
return lp, x, mip.A, mip.b, mip.sense, mip.integerIndices
else:
#TODO Change sense of inequalities so they are all the same
# by explicitly checking lp.constraintsUpper and lp.constraintsLower
#Warning: Reading MP not well tested
lp.extractCyLPModel(file_name)
x = lp.cyLPModel.getVarByName('x')
sense = ('Min', '>=')
return lp, x, None, None, sense, integerIndices
示例14: test_1
def test_1(self):
"""simplest QP test"""
s = CyClpSimplex()
s.readMps(join(currentFilePath, '../input/hs35.qps'))
#self.assertTrue(abs(cbcModel.objectiveValue - 3089.0) < 10 ** -6)
#print s.Hessian.todense()
p = WolfePivot(s)
s.setPivotMethod(p)
s.primal()
print s.primalVariableSolution
print s.objectiveValue
示例15: read_instance
def read_instance(module_name = None, file_name = None):
if module_name is not None:
lp = CyClpSimplex()
mip = ilib.import_module(module_name)
A = np.matrix(mip.A)
#print np.linalg.cond(A)
b = CyLPArray(mip.b)
#Warning: At the moment, you must put bound constraints in explicitly for split cuts
x_l = CyLPArray([0 for _ in range(mip.numVars)])
x = lp.addVariable('x', mip.numVars)
lp += x >= x_l
try:
x_u = CyLPArray(getattr(mip, 'x_u'))
lp += x <= x_u
except:
pass
lp += (A * x <= b if mip.sense[1] == '<=' else
A * x >= b)
c = CyLPArray(mip.c)
lp.objective = -c * x if mip.sense[0] == 'Max' else c * x
return lp, x, mip.A, mip.b, mip.sense[1], mip.integerIndices
elif file_name is not None:
lp = CyClpSimplex()
m = lp.extractCyLPModel(file_name)
x = m.getVarByName('x')
integerIndices = [i for (i, j) in enumerate(lp.integerInformation) if j == True]
infinity = lp.getCoinInfinity()
sense = None
for i in range(lp.nRows):
if lp.constraintsLower[i] > -infinity:
if sense == '<=':
print "Function does not support mixed constraint..."
break
else:
sense = '>='
b = lp.constraintsLower
if lp.constraintsUpper[i] < infinity:
if sense == '>=':
print "Function does not support mixed constraint..."
break
else:
sense = '<='
b = lp.constraintsUpper
return lp, x, lp.coefMatrix, b, sense, integerIndices
else:
print "No file or module name specified..."
return None, None, None, None, None, None