當前位置: 首頁>>代碼示例>>Python>>正文


Python CyClpSimplex.objective方法代碼示例

本文整理匯總了Python中cylp.cy.CyClpSimplex.objective方法的典型用法代碼示例。如果您正苦於以下問題:Python CyClpSimplex.objective方法的具體用法?Python CyClpSimplex.objective怎麽用?Python CyClpSimplex.objective使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在cylp.cy.CyClpSimplex的用法示例。


在下文中一共展示了CyClpSimplex.objective方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test2

# 需要導入模塊: from cylp.cy import CyClpSimplex [as 別名]
# 或者: from cylp.cy.CyClpSimplex import objective [as 別名]
    def test2(self):
        'Same as test1, but use cylp indirectly.'
        s = CyClpSimplex()

        x = s.addVariable('x', 3)

        A = np.matrix([[1,2,3], [1,1,1]])
        b = CyLPArray([5, 3])

        s += A * x == b
        s += x >= 0

        s.objective = 1 * x[0] + 1 * x[1] + 1.1 * x[2]

        # Solve it a first time
        s.primal()
        sol = s.primalVariableSolution['x']
        self.assertTrue((abs(sol - np.array([1,2,0]) ) <= 10**-6).all())
        # Add a cut
        s.addConstraint(x[0] >= 1.1)
        s.primal()
        sol = s.primalVariableSolution['x']
        self.assertTrue((abs(sol - np.array([1.1, 1.8, 0.1]) ) <= 10**-6).all())

        # Change the objective function
        c = csr_matrixPlus([[1, 10, 1.1]]).T
        s.objective = c.T * x
        s.primal()
        sol = s.primalVariableSolution['x']
        self.assertTrue((abs(sol - np.array([2, 0, 1]) ) <= 10**-6).all())
開發者ID:HerrKevin,項目名稱:CyLP,代碼行數:32,代碼來源:test_CyClpSimplex_CyLPModel.py

示例2: QPModel

# 需要導入模塊: from cylp.cy import CyClpSimplex [as 別名]
# 或者: from cylp.cy.CyClpSimplex import objective [as 別名]
    def QPModel(self, addW=False):
        A = self.A
        c = self.c
        s = CyClpSimplex()
        
        x = s.addVariable('x', self.nCols)
        if addW:
            w = s.addVariable('w', self.nCols)
        
        s += A * x >= 1
        n = self.nCols
        
        if not addW:
            s += 0 <= x <= 1
        else:
            s += x + w == 1
            s += 0 <= w <= 1

##        s += -1 <= x <= 1

        s.objective = c * x
       
        if addW:
            G = sparse.lil_matrix((2*n, 2*n))
            for i in xrange(n/2, n): #xrange(n-1):
                G[i, i] = 1
            G[2*n-1, 2*n-1] = 10**-10
        else:
            G = sparse.lil_matrix((n, n))
            for i in xrange(n/2, n): #xrange(n-1):
                G[i, i] = 1

    
        s.Hessian = G
        return s
開發者ID:HerrKevin,項目名稱:CyLP,代碼行數:37,代碼來源:readSetcovering.py

示例3: test

# 需要導入模塊: from cylp.cy import CyClpSimplex [as 別名]
# 或者: from cylp.cy.CyClpSimplex import objective [as 別名]
    def test(self):
        model = CyLPModel()

        x = model.addVariable('x', 3)

        A = np.matrix([[1,2,3], [1,1,1]])
        b = CyLPArray([5, 3])

        model.addConstraint(A * x == b)
        model.addConstraint(x >= 0)

        model.objective = 1*x[0]  + 1*x[1] + 1.1 * x[2]

        # Solve it a first time
        s = CyClpSimplex(model)
        s.primal()
        sol = s.primalVariableSolution['x']
        self.assertTrue((abs(sol - np.array([1,2,0]) ) <= 10**-6).all())
        # Add a cut
        s.addConstraint(x[0] >= 1.1)
        s.primal()
        sol = s.primalVariableSolution['x']
        self.assertTrue((abs(sol - np.array([1.1, 1.8, 0.1]) ) <= 10**-6).all())

        # Change the objective function
        c = csr_matrixPlus([[1, 10, 1.1]]).T
        s.objective = c.T * x
        s.primal()
        sol = s.primalVariableSolution['x']
        self.assertTrue((abs(sol - np.array([2, 0, 1]) ) <= 10**-6).all())
開發者ID:HerrKevin,項目名稱:CyLP,代碼行數:32,代碼來源:test_CyClpSimplex_CyLPModel.py

示例4: read_instance

# 需要導入模塊: from cylp.cy import CyClpSimplex [as 別名]
# 或者: from cylp.cy.CyClpSimplex import objective [as 別名]
def read_instance(module_name = None, file_name = None):

    if module_name is not None:
        lp = CyClpSimplex()

        mip = ilib.import_module(module_name)
            
        A = np.matrix(mip.A)
        #print np.linalg.cond(A)
        b = CyLPArray(mip.b)
        
        #Warning: At the moment, you must put bound constraints in explicitly for split cuts
        x_l = CyLPArray([0 for _ in range(mip.numVars)])
            
        x = lp.addVariable('x', mip.numVars)
        
        lp += x >= x_l
        try:
            x_u = CyLPArray(getattr(mip, 'x_u'))
            lp += x <= x_u
        except:
            pass
        
        lp += (A * x <= b if mip.sense[1] == '<=' else
               A * x >= b)
        c = CyLPArray(mip.c)
        lp.objective = -c * x if mip.sense[0] == 'Max' else c * x
        return lp, x, mip.A, mip.b, mip.sense[1], mip.integerIndices
    elif file_name is not None:
        lp = CyClpSimplex()
        m = lp.extractCyLPModel(file_name)
        x = m.getVarByName('x')
        integerIndices = [i for (i, j) in enumerate(lp.integerInformation) if j == True]
        infinity = lp.getCoinInfinity()
        sense = None
        for i in range(lp.nRows):
            if lp.constraintsLower[i] > -infinity:
                if sense == '<=':
                    print "Function does not support mixed constraint..."
                    break
                else: 
                    sense = '>='
                    b = lp.constraintsLower
            if lp.constraintsUpper[i] < infinity: 
                if sense == '>=':
                    print "Function does not support mixed constraint..."
                    break
                else: 
                    sense = '<='
                    b = lp.constraintsUpper
        return lp, x, lp.coefMatrix, b, sense, integerIndices
    else:
        print "No file or module name specified..."
        return None, None, None, None, None, None
開發者ID:ashutoshmahajan,項目名稱:CuPPy,代碼行數:56,代碼來源:cuttingPlanes.py

示例5: model

# 需要導入模塊: from cylp.cy import CyClpSimplex [as 別名]
# 或者: from cylp.cy.CyClpSimplex import objective [as 別名]
    def model(self):
        A = self.A
        c = self.c
        s = CyClpSimplex()
        
        x = s.addVariable('x', self.nCols)

        s += A * x >= 1
        s += 0 <= x <= 1
        
        s.objective = c * x

        return s
開發者ID:HerrKevin,項目名稱:CyLP,代碼行數:15,代碼來源:readSetcovering.py

示例6: test_multiDim

# 需要導入模塊: from cylp.cy import CyClpSimplex [as 別名]
# 或者: from cylp.cy.CyClpSimplex import objective [as 別名]
    def test_multiDim(self):
        from cylp.cy import CyClpSimplex
        from cylp.py.modeling.CyLPModel import CyLPArray
        s = CyClpSimplex()
        x = s.addVariable('x', (5, 3, 6))
        s += 2 * x[2, :, 3].sum() + 3 * x[0, 1, :].sum() >= 5

        s += 0 <= x <= 1
        c = CyLPArray(range(18))

        s.objective = c * x[2, :, :] + c * x[0, :, :]
        s.primal()
        sol = s.primalVariableSolution['x']
        self.assertTrue(abs(sol[0, 1, 0] - 1) <= 10**-6)
        self.assertTrue(abs(sol[2, 0, 3] - 1) <= 10**-6)
開發者ID:HerrKevin,項目名稱:CyLP,代碼行數:17,代碼來源:test_CyClpSimplex_CyLPModel.py

示例7: test_ArrayIndexing

# 需要導入模塊: from cylp.cy import CyClpSimplex [as 別名]
# 或者: from cylp.cy.CyClpSimplex import objective [as 別名]
    def test_ArrayIndexing(self):
        from cylp.cy import CyClpSimplex
        from cylp.py.modeling.CyLPModel import CyLPArray
        s = CyClpSimplex()
        x = s.addVariable('x', (5, 3, 6))
        s += 2 * x[2, :, 3].sum() + 3 * x[0, 1, :].sum() >= 5


        s += x[1, 2, [0, 3, 5]] - x[2, 1, np.array([1, 2, 4])] == 1
        s += 0 <= x <= 1
        c = CyLPArray(range(18))

        s.objective = c * x[2, :, :] + c * x[0, :, :]
        s.primal()
        sol = s.primalVariableSolution['x']
        self.assertTrue(abs(sol[1, 2, 0] - 1) <= 10**-6)
        self.assertTrue(abs(sol[1, 2, 3] - 1) <= 10**-6)
        self.assertTrue(abs(sol[1, 2, 5] - 1) <= 10**-6)
開發者ID:HerrKevin,項目名稱:CyLP,代碼行數:20,代碼來源:test_CyClpSimplex_CyLPModel.py

示例8: test_onlyBounds2

# 需要導入模塊: from cylp.cy import CyClpSimplex [as 別名]
# 或者: from cylp.cy.CyClpSimplex import objective [as 別名]
    def test_onlyBounds2(self):
        s = CyClpSimplex()

        x = s.addVariable('x', 3)
        y = s.addVariable('y', 2)

        s += y >= 1
        s += 2 <= x <= 4

        c = CyLPArray([1., -2., 3.])
        s.objective = c * x + 2 * y[0] + 2 * y[1]

        s.primal()

        sol = np.concatenate((s.primalVariableSolution['x'],
                              s.primalVariableSolution['y']))
        self.assertTrue((abs(sol -
                        np.array([2, 4, 2, 1, 1]) ) <= 10**-6).all())
開發者ID:HerrKevin,項目名稱:CyLP,代碼行數:20,代碼來源:test_CyClpSimplex_CyLPModel.py

示例9: test_multiDim_Cbc_solve

# 需要導入模塊: from cylp.cy import CyClpSimplex [as 別名]
# 或者: from cylp.cy.CyClpSimplex import objective [as 別名]
    def test_multiDim_Cbc_solve(self):
        from cylp.cy import CyClpSimplex
        from cylp.py.modeling.CyLPModel import CyLPArray
        s = CyClpSimplex()
        x = s.addVariable('x', (5, 3, 6))
        s += 2 * x[2, :, 3].sum() + 3 * x[0, 1, :].sum() >= 5.5
        s += 0 <= x <= 2.2
        c = CyLPArray(range(18))
        s.objective = c * x[2, :, :] + c * x[0, :, :]

        s.setInteger(x)

        cbcModel = s.getCbcModel()
        cbcModel.solve()

        sol_x = cbcModel.primalVariableSolution['x']
        self.assertTrue(abs(sol_x[0, 1, 0] - 1) <= 10**-6)
        self.assertTrue(abs(sol_x[2, 0, 3] - 2) <= 10**-6)
開發者ID:HerrKevin,項目名稱:CyLP,代碼行數:20,代碼來源:test_MIP.py

示例10: read_instance

# 需要導入模塊: from cylp.cy import CyClpSimplex [as 別名]
# 或者: from cylp.cy.CyClpSimplex import objective [as 別名]
def read_instance(module_name = True, file_name = None):

    if module_name:
        lp = CyClpSimplex()

        mip = ilib.import_module(module_name)
            
        A = np.matrix(mip.A)
        #print np.linalg.cond(A)
        b = CyLPArray(mip.b)
        
        #We assume variables have zero lower bounds
        x_l = CyLPArray([0 for _ in range(mip.numVars)])
            
        x = lp.addVariable('x', mip.numVars)
        
        lp += x >= x_l
        try:
            x_u = CyLPArray(getattr(mip, 'x_u'))
            lp += x <= x_u
        except:
            pass
        
        lp += (A * x <= b if mip.sense[1] == '<=' else
               A * x >= b)
        c = CyLPArray(mip.c)
        lp.objective = -c * x if mip.sense[0] == 'Max' else c * x
        
        return lp, x, mip.A, mip.b, mip.sense, mip.integerIndices
    else:
        #TODO Change sense of inequalities so they are all the same
        #     by explicitly checking lp.constraintsUpper and lp.constraintsLower
        #Warning: Reading MP not well tested 
        lp.extractCyLPModel(file_name)
        x = lp.cyLPModel.getVarByName('x')
        sense = ('Min', '>=')
        return lp, x, None, None, sense, integerIndices
開發者ID:desteffy,項目名稱:CuPPy,代碼行數:39,代碼來源:cuttingPlanes.py

示例11: getCoinInfinity

# 需要導入模塊: from cylp.cy import CyClpSimplex [as 別名]
# 或者: from cylp.cy.CyClpSimplex import objective [as 別名]
def getCoinInfinity():
    return 1.79769313486e+308


if __name__ == '__main__':
    from cylp.cy import CyClpSimplex
    from cylp.py.modeling.CyLPModel import CyLPArray
    s = CyClpSimplex()
    x = s.addVariable('x', (5, 3, 6))
    s += 2 * x[2, :, 3].sum() + 3 * x[0, 1, :].sum() >= 5

    s += 0 <= x <= 1
    c = CyLPArray(range(18))

    s.objective = c * x[2, :, :] + c * x[0, :, :]
    s.writeMps('/Users/mehdi/Desktop/test.mps')
    s.primal()
    sol = s.primalVariableSolution
    print sol

#model = CyLPModel()
#
#x = model.addVariable('x', 5)
#y = model.addVariable('y', 4)
#z = model.addVariable('z', 5)
#
#
#b = CyLPArray([3.1, 4.2])
#aa = np.matrix([[1, 2, 3, 3, 4], [3, 2, 1, 2, 5]])
#aa = np.matrix([[0, 0, 0, -1.5, -1.5], [-3, 0, 0, -2,0 ]])
開發者ID:Foris,項目名稱:CyLP,代碼行數:32,代碼來源:CyLPModel.py

示例12: solve

# 需要導入模塊: from cylp.cy import CyClpSimplex [as 別名]
# 或者: from cylp.cy.CyClpSimplex import objective [as 別名]
    def solve(self, objective, constraints, cached_data,
              warm_start, verbose, solver_opts):
        """Returns the result of the call to the solver.

        Parameters
        ----------
        objective : LinOp
            The canonicalized objective.
        constraints : list
            The list of canonicalized cosntraints.
        cached_data : dict
            A map of solver name to cached problem data.
        warm_start : bool
            Not used.
        verbose : bool
            Should the solver print output?
        solver_opts : dict
            Additional arguments for the solver.

        Returns
        -------
        tuple
            (status, optimal value, primal, equality dual, inequality dual)
        """
        # Import basic modelling tools of cylp
        from cylp.cy import CyClpSimplex
        from cylp.py.modeling.CyLPModel import CyLPArray

        # Get problem data
        data = self.get_problem_data(objective, constraints, cached_data)

        c = data[s.C]
        b = data[s.B]
        A = data[s.A]
        dims = data[s.DIMS]

        n = c.shape[0]

        solver_cache = cached_data[self.name()]

        # Problem
        model = CyClpSimplex()

        # Variables
        x = model.addVariable('x', n)

        if self.is_mip(data):
            for i in data[s.BOOL_IDX]:
                model.setInteger(x[i])
            for i in data[s.INT_IDX]:
                model.setInteger(x[i])

        # Constraints
        # eq
        model += A[0:dims[s.EQ_DIM], :] * x == b[0:dims[s.EQ_DIM]]

        # leq
        leq_start = dims[s.EQ_DIM]
        leq_end = dims[s.EQ_DIM] + dims[s.LEQ_DIM]
        model += A[leq_start:leq_end, :] * x <= b[leq_start:leq_end]

        # no boolean vars available in cbc -> model as int + restrict to [0,1]
        if self.is_mip(data):
            for i in data[s.BOOL_IDX]:
                model += 0 <= x[i] <= 1

        # Objective
        model.objective = c

        # Build model & solve
        status = None
        if self.is_mip(data):
            cbcModel = model.getCbcModel()  # need to convert model
            if not verbose:
                cbcModel.logLevel = 0

            # Add cut-generators (optional)
            for cut_name, cut_func in six.iteritems(self.SUPPORTED_CUT_GENERATORS):
                if cut_name in solver_opts and solver_opts[cut_name]:
                    module = importlib.import_module("cylp.cy.CyCgl")
                    funcToCall = getattr(module, cut_func)
                    cut_gen = funcToCall()
                    cbcModel.addCutGenerator(cut_gen, name=cut_name)

            # solve
            status = cbcModel.branchAndBound()
        else:
            if not verbose:
                model.logLevel = 0
            status = model.primal()  # solve

        results_dict = {}
        results_dict["status"] = status

        if self.is_mip(data):
            results_dict["x"] = cbcModel.primalVariableSolution['x']
            results_dict["obj_value"] = cbcModel.objectiveValue
        else:
            results_dict["x"] = model.primalVariableSolution['x']
            results_dict["obj_value"] = model.objectiveValue
#.........這裏部分代碼省略.........
開發者ID:Adarsh-Barik,項目名稱:cvxpy,代碼行數:103,代碼來源:cbc_intf.py

示例13: disp_polyhedron

# 需要導入模塊: from cylp.cy import CyClpSimplex [as 別名]
# 或者: from cylp.cy.CyClpSimplex import objective [as 別名]
 
     if LP.numVars == 2:
         disp_polyhedron(A = A, b = b)
 
     x = lp.addVariable('x', LP.numVars)
         
     if LP.sense[0] == '>=':
         lp += A * x >= b
     else:
         lp += A * x <= b
     #lp += x >= 0
 
     c = CyLPArray(LP.c)
     # We are maximizing, so negate objective
     if LP.sense[1] == 'Min':
         lp.objective = c * x
     else:
         lp.objective = -c * x
     lp.logLevel = 0
     lp.primal(startFinishOptions = 'x')
     np.set_printoptions(precision = 2, linewidth = 200)
     print('Basic variables: ', lp.basicVariables)
     print("Current tableaux and reduced costs:")
     print(lp.reducedCosts)
     print(np.around(lp.tableau, decimals = 3))
     print('Right-hand side of optimal tableaux:')
     #There is a bug in CyLP and this is wrong
     #print lp.rhs
     if LP.sense[0] == '<=':
         print(np.dot(lp.basisInverse, lp.constraintsUpper))
     else:
開發者ID:coin-or,項目名稱:GrUMPy,代碼行數:33,代碼來源:DisplayPolyhedronAndSolveLP.py

示例14: __init__

# 需要導入模塊: from cylp.cy import CyClpSimplex [as 別名]
# 或者: from cylp.cy.CyClpSimplex import objective [as 別名]
 def __init__(self, module_name = None, file_name = None,
              A = None, b = None, c = None,
              points = None, rays = None,
              sense = None, integerIndices = None, 
              numVars = None):
     
     if file_name is not None:
         # We got a file name, so ignore everything else and read in the instance
         lp = CyClpSimplex()
         lp.extractCyLPModel(file_name)
         self.integerIndices = [i for (i, j) in enumerate(lp.integerInformation) if j == True]
         infinity = lp.getCoinInfinity()
         A = lp.coefMatrix
         b = CyLPArray([0 for _ in range(lp.nRows)])
         for i in range(lp.nRows):
             if lp.constraintsLower[i] > -infinity:
                 if lp.constraintsUpper[i] < infinity:
                     raise Exception('Cannot handle ranged constraints')
                 b[i] = -lp.constraintsLower[i]
                 for j in range(lp.nCols):
                     A[i, j] = -A[i, j]
             elif lp.constraintsUpper[i] < infinity:
                 b[i] = lp.constraintsUpper[i]
             else:
                 raise Exception('Constraint with no bounds detected')
         x = lp.addVariable('x', lp.nCols)
         lp += A * x <= b
         lp += x <= lp.variablesUpper
         lp += x >= lp.variablesLower
         lp.objective = lp.objective
         self.sense = '<='
         numVars = lp.nCols
     else:
         min_or_max = None
         if module_name is not None:
             # We got a module name, read the data from there
             mip = ilib.import_module(module_name)
             self.A = mip.A if hasattr(mip, 'A') else None
             self.b = mip.b if hasattr(mip, 'b') else None
             points = mip.points if hasattr(mip, 'points') else None
             rays = mip.rays if hasattr(mip, 'rays') else None
             self.c = mip.c if hasattr(mip, 'c') else None
             self.sense = mip.sense[1] if hasattr(mip, 'sense') else None
             min_or_max = mip.sense[0] if hasattr(mip, 'sense') else None
             self.integerIndices = mip.integerIndices if hasattr(mip, 'integerIndices') else None
             x_u = CyLPArray(mip.x_u) if hasattr(mip, 'x_u') else None
             numVars = mip.numVars if hasattr(mip, 'numVars') else None
             self.x_sep = mip.x_sep if hasattr(mip, 'x_sep') else None
             if numVars is None and mip.A is not None:
                 numVars = len(mip.A)
    
             if numVars is None:
                 raise "Must specify number of variables when problem is not"   
         else:
             self.A = A
             self.b = b
             self.c = c
             self.points = points
             self.rays = rays
             if sense is not None:
                 self.sense = sense[1]
                 min_or_max = sense[0]
             self.integerIndices = integerIndices
             x_u = None
             
         lp = CyClpSimplex()
         if self.A is not None:
             A = np.matrix(self.A)
             b = CyLPArray(self.b)
         elif numVars <= 2 and GRUMPY_INSTALLED:
             p = Polyhedron2D(points = points, rays = rays)
             A = np.matrix(p.hrep.A)
             b = np.matrix(p.hrep.b)
         else:
             raise "Must specify problem in inequality form with more than two variables\n"   
     
         #Warning: At the moment, you must put bound constraints in explicitly for split cuts
         x_l = CyLPArray([0 for _ in range(numVars)])
             
         x = lp.addVariable('x', numVars)
         
         lp += x >= x_l
         if x_u is not None:
             lp += x <= x_u
         lp += (A * x <= b if self.sense == '<=' else
                A * x >= b)
         c = CyLPArray(self.c)
         if min_or_max == 'Max':
             lp.objective = -c * x
         else:
             lp.objective = c * x
         self.lp = lp
         self.x = x
開發者ID:tkralphs,項目名稱:CuPPy,代碼行數:95,代碼來源:milpInstance.py


注:本文中的cylp.cy.CyClpSimplex.objective方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。