本文整理匯總了Python中catalog.Catalog.record_mainshocks方法的典型用法代碼示例。如果您正苦於以下問題:Python Catalog.record_mainshocks方法的具體用法?Python Catalog.record_mainshocks怎麽用?Python Catalog.record_mainshocks使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類catalog.Catalog
的用法示例。
在下文中一共展示了Catalog.record_mainshocks方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: apply_decluster
# 需要導入模塊: from catalog import Catalog [as 別名]
# 或者: from catalog.Catalog import record_mainshocks [as 別名]
def apply_decluster(self):
"""
apply window method to the whole catalog and write mainshocks on file
"""
# get instances of classes we'll need
catalog = Catalog()
window_var = WindowVar()
# from the catalog we want, get earthquakes array on memory
earthquake_array = catalog.get_earthquake_array('../catalogs/new_jma.txt')
# decluster array, separating mainshocks and aftershocks
declustered_array = window_var.decluster(earthquake_array)
# save declustered array using pickle
file_aux1 = open('data_persistence/declustered_array_window_var', 'wb')
pickle.dump(declustered_array, file_aux1)
# open declustered array using another name
file_aux2 = open('data_persistence/declustered_array_window_var', 'rb')
new_declustered_array = pickle.load(file_aux2)
# save declustered array
# record the mainshocks on a catalog
catalog.record_mainshocks(declustered_array, file_write='../results/window_var_method/mainshocks.txt', file_read='../catalogs/jma.txt')
示例2: apply_decluster
# 需要導入模塊: from catalog import Catalog [as 別名]
# 或者: from catalog.Catalog import record_mainshocks [as 別名]
def apply_decluster(self):
"""
apply window method to the whole catalog and write mainshocks on file
"""
# get instances of classes we'll need
catalog = Catalog()
kmeans = KMeans()
# from the catalog we want, get earthquakes array on memory
earthquake_array = catalog.get_earthquake_array('../catalogs/new_jma.txt')
# decluster array, separating mainshocks and aftershocks
declustered_array = kmeans.do_kmeans(earthquake_array)
# record the mainshocks on a catalog
catalog.record_mainshocks(declustered_array, file_write='../results/mainshocks.txt', file_read='../catalogs/jma.txt')
示例3: apply_decluster_smaller
# 需要導入模塊: from catalog import Catalog [as 別名]
# 或者: from catalog.Catalog import record_mainshocks [as 別名]
def apply_decluster_smaller(self):
"""
apply window method to a smaller catalog and write mainshocks on file
"""
# get instances of classes we'll need
catalog = Catalog()
kmeans = KMeans()
# obtain a smaller catalog, so we can run this function faster
catalog.get_smaller_catalog(300)
# from the catalog we want, get earthquakes array on memory
earthquake_array = catalog.get_earthquake_array()
# decluster array, separating mainshocks and aftershocks
declustered_array = kmeans.do_kmeans(earthquake_array, 25)
# record the mainshocks on a catalog
catalog.record_mainshocks(declustered_array, file_write='../results/mainshocks.txt', file_read='../catalogs/reduced_jma.txt')
示例4: study_chi_square
# 需要導入模塊: from catalog import Catalog [as 別名]
# 或者: from catalog.Catalog import record_mainshocks [as 別名]
def study_chi_square(self, mag_thresh, region, time_spacing):
"""
receives a magnitude threshold, a region and a interval of time
perform a poisson test on the clusters that had quakes with magnitude above the threshold
prints the results and returns nothing
"""
CLUSTER_NUM = 1
# auxiliar class
stat = Statistic()
cat = Catalog()
slc = Single_Link()
print('\nApplying chi-squared for magnitude ' + str(mag_thresh) + ' and region ' + str(region) + \
' and time interval of ' + str(time_spacing) + ' seconds')
# get the name of the declustered and undeclustered catalog
decluster_catalog = '../results/single_link/temp_decluster_' + region + '.txt'
original_catalog = '../results/single_link/temp_original_' + region + '.txt'
aux_catalog = '../results/single_link/temp_aux_' + region + '.txt'
# obtain catalog containing the quakes of the region - cat_region
cat_orig = '../catalogs/new_jma.txt'
cat_region = '../results/single_link/temp.txt'
bounds = get_region_bounds(region)
cat.select_geographically(bounds, cat_orig, cat_region)
# generates catalog containing only the mainshocks of clusters that had one quake (at least)
# with a shock greater than the magnitude threshold
# open quake declustered array
path = '../results/single_link/declustered_array_' + region
quakes = pickle.load(open(path, 'rb'))
# mark every quake initially as an aftershock
for quake in quakes:
quake.is_aftershock = True
# iterate through all quakes
count = 0
for quake in quakes:
# if the current quake has magnitude bigger than or equal to the threshold
if quake.mag >= mag_thresh:
# mark as mainshock the centroid it belongs to
quakes[quake.centroid_index].is_aftershock = False
count += 1
#print(count)
# from the quake and catalog to read from, obtain declustered catalog
cat.record_mainshocks(quakes, aux_catalog, cat_region)
cat.get_mainshocks(decluster_catalog, aux_catalog, index = 5)
# obtain original catalog for the region, only with quakes bigger than magnitude
cat.get_mag_threshold(cat_region, original_catalog, mag_thresh)
# apply the chisquared test for the declustered catalog and for the original catalog
print("Applying chi-squared for declustered catalog")
stat.do_chi_square(decluster_catalog, 0.05, time_spacing)
print("Applying chi-squared for the original catalog")
stat.do_chi_square(original_catalog, 0.05, time_spacing)
示例5: study_chisquare
# 需要導入模塊: from catalog import Catalog [as 別名]
# 或者: from catalog.Catalog import record_mainshocks [as 別名]
def study_chisquare(self, folder, array_path, days, alpha, mag_threshold=None):
"""
receives a folder to look for the quakes, the path where the earthquake array is located,
the number of days, a significance level and optionally a magnitude threshold
performs a chisquare test for the 4 regions of japan and all the japan
by taking the observed frequencies in that number of days
"""
# auxiliar classes needed
catalog = Catalog()
stat = Statistic()
# calculate the number of seconds to be done on the interval
time_interval = days * 24.0 * 360.0
# generate catalog in a good format to work with
quakes = pickle.load(open(array_path, 'rb'))
catalog.record_mainshocks(quakes, folder + 'quakes.txt', '../catalogs/new_jma.txt')
# get the core catalog name, and obtain it
if mag_threshold == None:
CATALOG_EXTENSION = 'quakes.txt'
else:
CATALOG_EXTENSION = 'quakes_' + str(mag_threshold) + '.txt'
catalog.get_mag_threshold(folder + 'quakes.txt', folder + CATALOG_EXTENSION ,mag_threshold)
# do chi square test for all japan, with aftershocks
print("Doing chi-square test for all japan, including aftershocks on analysis:")
stat.do_chi_square(folder + CATALOG_EXTENSION, 0.05, time_interval)
# do chi square test for all japan, without aftershocks
print("\nDoing chi-square test for all japan, excluding aftershocks on analysis")
catalog.get_mainshocks(folder + 'japan_mainshocks.txt', folder + CATALOG_EXTENSION, 5)
stat.do_chi_square(folder + 'japan_mainshocks.txt', 0.05, time_interval)
# get bounds for kanto
bounds = catalog.get_kanto_bounds()
# construct a catalog for quakes that happened in kanto
catalog.select_geographically(bounds, folder + CATALOG_EXTENSION,
folder + 'quakes_kanto.txt')
# do chi_squared test for kanto, with aftershocks
print("\nDoing chi-square test for kanto, including aftershocks on analysis:")
stat.do_chi_square(folder + 'quakes_kanto.txt', 0.05, time_interval)
# do chi_squared test for kanto, without aftershocks
print("\nDoing chi-square test for kanto, excluding aftershocks on analysis")
catalog.get_mainshocks(folder + 'mainshocks_kanto.txt', folder + 'quakes_kanto.txt', 5)
stat.do_chi_square(folder + 'mainshocks_kanto.txt', 0.05, time_interval)
# get bounds for kansai
bounds = catalog.get_kansai_bounds()
# construct a catalog for quakes that happened in kansai
catalog.select_geographically(bounds, folder + CATALOG_EXTENSION,
folder + 'quakes_kansai.txt')
# do chi_squared test for kansai, with aftershocks
print("\nDoing chi-square test for kansai, including aftershocks on analysis:")
stat.do_chi_square(folder + 'quakes_kansai.txt', 0.05, time_interval)
# do chi_squared test for kansai, without aftershocks
print("\nDoing chi-square test for kansai, excluding aftershocks on analysis")
catalog.get_mainshocks(folder + 'mainshocks_kansai.txt', folder + 'quakes_kansai.txt', 5)
stat.do_chi_square(folder + 'mainshocks_kansai.txt', 0.05, time_interval)
# get bounds for tohoku
bounds = catalog.get_tohoku_bounds()
# construct a catalog for quakes that happened in tohoku
catalog.select_geographically(bounds, folder + CATALOG_EXTENSION,
folder + 'quakes_tohoku.txt')
# do chi_squared test for tohoku, with aftershocks
print("\nDoing chi-square test for tohoku, including aftershocks on analysis:")
stat.do_chi_square(folder + 'quakes_tohoku.txt', 0.05, time_interval)
# do chi_squared test for tohoku, without aftershocks
print("\nDoing chi-square test for tohoku, excluding aftershocks on analysis")
catalog.get_mainshocks(folder + 'mainshocks_tohoku.txt', folder + 'quakes_tohoku.txt', 5)
stat.do_chi_square(folder + 'mainshocks_tohoku.txt', 0.05, time_interval)
# get bounds for east_japan
bounds = catalog.get_east_japan_bounds()
# construct a catalog for quakes that happened in east_japan
catalog.select_geographically(bounds, folder + CATALOG_EXTENSION,
folder + 'quakes_east_japan.txt')
# do chi_squared test for east_japan, with aftershocks
print("\nDoing chi-square test for east_japan, including aftershocks on analysis:")
stat.do_chi_square(folder + 'quakes_east_japan.txt', 0.05, time_interval)
# do chi_squared test for east_japan, without aftershocks
print("\nDoing chi-square test for east_japan, excluding aftershocks on analysis")
catalog.get_mainshocks(folder + 'mainshocks_east_japan.txt', folder + 'quakes_east_japan.txt', 5)
stat.do_chi_square(folder + 'mainshocks_east_japan.txt', 0.05, time_interval)