本文整理匯總了Python中catalog.Catalog.get_earthquake_array方法的典型用法代碼示例。如果您正苦於以下問題:Python Catalog.get_earthquake_array方法的具體用法?Python Catalog.get_earthquake_array怎麽用?Python Catalog.get_earthquake_array使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類catalog.Catalog
的用法示例。
在下文中一共展示了Catalog.get_earthquake_array方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: apply_decluster
# 需要導入模塊: from catalog import Catalog [as 別名]
# 或者: from catalog.Catalog import get_earthquake_array [as 別名]
def apply_decluster(self):
"""
apply window method to the whole catalog and write mainshocks on file
"""
# get instances of classes we'll need
catalog = Catalog()
window_var = WindowVar()
# from the catalog we want, get earthquakes array on memory
earthquake_array = catalog.get_earthquake_array('../catalogs/new_jma.txt')
# decluster array, separating mainshocks and aftershocks
declustered_array = window_var.decluster(earthquake_array)
# save declustered array using pickle
file_aux1 = open('data_persistence/declustered_array_window_var', 'wb')
pickle.dump(declustered_array, file_aux1)
# open declustered array using another name
file_aux2 = open('data_persistence/declustered_array_window_var', 'rb')
new_declustered_array = pickle.load(file_aux2)
# save declustered array
# record the mainshocks on a catalog
catalog.record_mainshocks(declustered_array, file_write='../results/window_var_method/mainshocks.txt', file_read='../catalogs/jma.txt')
示例2: apply_decluster
# 需要導入模塊: from catalog import Catalog [as 別名]
# 或者: from catalog.Catalog import get_earthquake_array [as 別名]
def apply_decluster(self):
"""
apply window method to the whole catalog and write mainshocks on file
"""
# get instances of classes we'll need
catalog = Catalog()
kmeans = KMeans()
# from the catalog we want, get earthquakes array on memory
earthquake_array = catalog.get_earthquake_array('../catalogs/new_jma.txt')
# decluster array, separating mainshocks and aftershocks
declustered_array = kmeans.do_kmeans(earthquake_array)
# record the mainshocks on a catalog
catalog.record_mainshocks(declustered_array, file_write='../results/mainshocks.txt', file_read='../catalogs/jma.txt')
示例3: apply_decluster_smaller
# 需要導入模塊: from catalog import Catalog [as 別名]
# 或者: from catalog.Catalog import get_earthquake_array [as 別名]
def apply_decluster_smaller(self):
"""
apply window method to a smaller catalog and write mainshocks on file
"""
# get instances of classes we'll need
catalog = Catalog()
kmeans = KMeans()
# obtain a smaller catalog, so we can run this function faster
catalog.get_smaller_catalog(300)
# from the catalog we want, get earthquakes array on memory
earthquake_array = catalog.get_earthquake_array()
# decluster array, separating mainshocks and aftershocks
declustered_array = kmeans.do_kmeans(earthquake_array, 25)
# record the mainshocks on a catalog
catalog.record_mainshocks(declustered_array, file_write='../results/mainshocks.txt', file_read='../catalogs/reduced_jma.txt')
示例4: compare_window_kmeans
# 需要導入模塊: from catalog import Catalog [as 別名]
# 或者: from catalog.Catalog import get_earthquake_array [as 別名]
def compare_window_kmeans(num_entries):
"""
receives a number of entries
the function applies to a catalog with that number of entries
the window method and the kmeans to decluster the catalog
the function returns a comparation, showing how much there is
of a difference between the two
Complexity: O(n^2)
"""
# obtain a smaller catalog
catalog = Catalog()
catalog.get_smaller_catalog(num_entries)
# get earthquake array of that catalog
quakes = catalog.get_earthquake_array()
# get declustered array of that catalog, according to the window method
window = Window()
window_quakes = window.decluster(quakes)
# get the number of mainshocks of that catalog, according to the kmeans clustering method
num_mainshocks = 0
for i in range(len(window_quakes)):
if window_quakes[i].is_aftershock == False:
num_mainshocks += 1
print(num_mainshocks)
# apply declustering using the kmeans method to the catalog
kmeans = KMeans()
kmeans_quakes = kmeans.do_kmeans(quakes, num_mainshocks)
# show what are the differences between both methods
for i in range(len(quakes)):
if window_quakes[i].is_aftershock != kmeans_quakes[i].is_aftershock:
print("found a difference!")