當前位置: 首頁>>代碼示例>>Python>>正文


Python Catalog.get_east_japan_bounds方法代碼示例

本文整理匯總了Python中catalog.Catalog.get_east_japan_bounds方法的典型用法代碼示例。如果您正苦於以下問題:Python Catalog.get_east_japan_bounds方法的具體用法?Python Catalog.get_east_japan_bounds怎麽用?Python Catalog.get_east_japan_bounds使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在catalog.Catalog的用法示例。


在下文中一共展示了Catalog.get_east_japan_bounds方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: analyse_regions

# 需要導入模塊: from catalog import Catalog [as 別名]
# 或者: from catalog.Catalog import get_east_japan_bounds [as 別名]
    def analyse_regions(self, array_path):
        """
        receives a path to an array of quakes object

        prints how many quakes there are outside a region that caused shocks on that region
        """
        # auxiliary object
        catalog = Catalog()

        # get earthquake array
        quakes = pickle.load(open(array_path, 'rb'))

        # analyse kanto
        kanto_bounds = catalog.get_kanto_bounds()
        self.analyse_region(quakes, kanto_bounds, 'kanto')

        # analyse kansai
        kansai_bounds = catalog.get_kansai_bounds()
        self.analyse_region(quakes, kansai_bounds, 'kansai')

        # analyse tohoku
        tohoku_bounds = catalog.get_tohoku_bounds()
        self.analyse_region(quakes, tohoku_bounds, 'tohoku')

        # analyse east_japan
        east_japan_bounds = catalog.get_east_japan_bounds()
        self.analyse_region(quakes, east_japan_bounds, 'east_japan')
開發者ID:gabriel951,項目名稱:pibic,代碼行數:29,代碼來源:stats.py

示例2: study_slc

# 需要導入模塊: from catalog import Catalog [as 別名]
# 或者: from catalog.Catalog import get_east_japan_bounds [as 別名]
    def study_slc(self):
        """
        receives nothing
        apply single link to all regions of japan
        saves the results on pickle objects
        """

        #defines
        COMPLETE_CATALOG = "../catalogs/new_jma.txt"
        TEMP_CATALOG1 = '../catalogs/temp1.txt'
        TEMP_CATALOG2 = '../catalogs/temp2.txt'
        DEBUG = '../catalogs/reduced_jma.txt'
        BOUND = 0
        MAG_THRESH = 1

        # auxiliary classes needed 
        cat = Catalog()
        slc1 = Single_Link()
        
        # distance threshold, the distance to use when the distance calculated 
        # by the single link cluster returns negative 
        dist_thresh = [12.0]

        # dictionary containing information of the quakes and region names 
        regions = {}
        regions["kanto"] = [cat.get_kanto_bounds(), 0.0]
        #regions["kansai"] = [cat.get_kansai_bounds(), 0.0]
        regions["tohoku"] = [cat.get_tohoku_bounds(), 0.0]
        regions["east_japan"] = [cat.get_east_japan_bounds(), 0.0]

        ## try to run for the whole japan catalog
        #japan_bound = [0.0, 400.0, 0.0, 400.0]
        #regions["japan"] = [japan_bound, 0.0]

        # iterate throgh every region
        for region, info in regions.items():
            
            for thresh in dist_thresh:

                # obtain catalog for the region
                cat.select_geographically(info[BOUND], COMPLETE_CATALOG, TEMP_CATALOG1)
                cat.get_mag_threshold(TEMP_CATALOG1, TEMP_CATALOG2, info[MAG_THRESH], index = 2)

                # apply single link to the catalog and get quake
                #quakes = slc1.apply_single_link(TEMP_CATALOG2, region, thresh)
                
                # save array as a pickle object in the correct location
                # save declustered quake array using pickle
                #path = 'data_persistence/declustered_array_slc_' + region + '_' + str(round(thresh, 3))
                #file_aux1 = open(path, 'wb')
                #pickle.dump(quakes, file_aux1)
        
                # classify quakes by making the centroid the medoid of the cluster 
                slc1.classify_quakes(path, 'closest')
                quake_path = path + '_classified_medoid'

        # clean up
        call(["rm", TEMP_CATALOG1, TEMP_CATALOG2])
開發者ID:gabriel951,項目名稱:pibic,代碼行數:60,代碼來源:single_link_simulation.py

示例3: plot_histograms

# 需要導入模塊: from catalog import Catalog [as 別名]
# 或者: from catalog.Catalog import get_east_japan_bounds [as 別名]
    def plot_histograms(self, folder):
        """
        receives a folder, corresponding to the path of the method we're using
        
        ex: folder = '../results/window_method/'

        plot histograms showing how much quakes have occurred on each year
        for the regions of kanto, kansai, tohoku and east japan
        """

        # auxiliar variable
        catalog = Catalog()

        # get bounds so to include all the japan 
        bounds = [0.0, 360.0, 0.0, 360.0]
        # plot histogram for all japan, considering only mainshocks 
        self.show_quakes_by_year(folder + 'classified_quakes.txt', bounds, folder + 'japan_mainshocks.jpg', 
                            'Mainshocks by year on japan region', mainshocks=True)  

        # plot histogram for japan, considering everything
        self.show_quakes_by_year(folder + 'classified_quakes.txt', bounds, folder + 'japan_all.jpg', 
                            'Quakes by year on japan region', mainshocks=False)
            
        # get bounds of kanto
        bounds = catalog.get_kanto_bounds()
        # plot histogram for kanto, considering only mainshocks 
        self.show_quakes_by_year(folder + 'classified_quakes.txt', bounds, folder + 'kanto_mainshocks.jpg', 
                            'Mainshocks by year on kanto region', mainshocks=True)  
        # plot histogram for kanto, considering everything
        self.show_quakes_by_year(folder + 'classified_quakes.txt', bounds, folder + 'kanto_all.jpg', 
                            'Quakes by year on kanto region', mainshocks=False)
        
        # get bounds of kansai
        bounds = catalog.get_kansai_bounds()
        # plot histogram for kansai, considering only mainshocks 
        self.show_quakes_by_year(folder + 'classified_quakes.txt', bounds, folder + 'kansai_mainshocks.jpg', 
                            'Mainshocks by year on kansai region', mainshocks=True)  
        # plot histogram for kansai, considering everything
        self.show_quakes_by_year(folder + 'classified_quakes.txt', bounds, folder + 'kansai_all.jpg', 
                            'Quakes by year on kansai region', mainshocks=False)
        
        # get bounds of tohoku
        bounds = catalog.get_tohoku_bounds()
        # plot histogram for tohoku, considering only mainshocks 
        self.show_quakes_by_year(folder + 'classified_quakes.txt', bounds, folder + 'tohoku_mainshocks.jpg', 
                            'Mainshocks by year on tohoku region', mainshocks=True)  
        # plot histogram for tohoku, considering everything
        self.show_quakes_by_year(folder +  'classified_quakes.txt', bounds, folder + 'tohoku_all.jpg', 
                            'Quakes by year on tohoku region', mainshocks=False)

        # get bounds of east_japan
        bounds = catalog.get_east_japan_bounds()
        # plot histogram for east_japan, considering only mainshocks 
        self.show_quakes_by_year(folder + 'classified_quakes.txt', bounds, folder + 'east_japan_mainshocks.jpg', 
                            'Mainshocks by year on east_japan region', mainshocks=True)  
        # plot histogram for east_japan, considering everything
        self.show_quakes_by_year(folder + 'classified_quakes.txt', bounds, folder + 'east_japan_all.jpg', 
                            'Quakes by year on east_japan region', mainshocks=False)
開發者ID:gabriel951,項目名稱:pibic,代碼行數:60,代碼來源:stats.py

示例4: get_region_bounds

# 需要導入模塊: from catalog import Catalog [as 別名]
# 或者: from catalog.Catalog import get_east_japan_bounds [as 別名]
def get_region_bounds(region):
    cat = Catalog()
    if region == "kanto":
        return cat.get_kanto_bounds()
    elif region == "kansai":
        return cat.get_kansai_bounds()
    elif region == "tohoku":
        return cat.get_tohoku_bounds()
    elif region == "east_japan":
        return cat.get_east_japan_bounds()
    else:
        exit("region not known")
開發者ID:gabriel951,項目名稱:pibic,代碼行數:14,代碼來源:regions.py

示例5: get_catalogs

# 需要導入模塊: from catalog import Catalog [as 別名]
# 或者: from catalog.Catalog import get_east_japan_bounds [as 別名]
    def get_catalogs(self):
        """
        reads each quake array, obtain correspondent catalog for each quake array
        in the end, unite all catalogs in one big catalog - jma style - 
        """
        # defines 
        CATALOG_READ = '../catalogs/jma.txt'

        # auxiliary classes needed
        cat = Catalog()
        slc = Single_Link()

        # get dictionary, containing for a given region the region bounds
        bounds = {}
        bounds["kanto"] = cat.get_kanto_bounds()
        bounds["kansai"] = cat.get_kansai_bounds()
        bounds["tohoku"] = cat.get_tohoku_bounds()
        bounds["east_japan"] = cat.get_east_japan_bounds()
        
        # obtain catalog for each region
        for region, bound in bounds.items():
            catalog_write = '../results/single_link/' + region + '_allshocks.txt'
            cat.select_geographically(bound, CATALOG_READ, catalog_write)
        
        # for each region, classify quakes
        for region, bound in bounds.items():
            quakes_path = 'data_persistence/declustered_array_slc_' + region 
            slc.classify_quakes(quakes_path, 'closest')

        # for each region
        for region, bound in bounds.items():
            
            # obtain quakes path, catalog to read from and catalog to write 
            quakes_path = 'data_persistence/declustered_array_slc_' + region + '_classified_medoid' 
            catalog_read = '../results/single_link/' + region + '_allshocks.txt' 
            catalog_write = '../results/single_link/' + region + '_classified.txt'
            slc.get_catalog_mainshocks(quakes_path, catalog_read, catalog_write) 

        # merge catalog in a big one
        call(["cat ../results/single_link/*classified.txt > ../results/single_link/temp.txt"], shell = True)

        # sort file by columns - firts the year, then the month and so it goes
        call(['sort -n -k 3,3 -n -k 4,4 -n -k 5,5 -n -k 8,8 -n -k 9,9 -n -k 10,10 ../results/single_link/temp.txt \
               > ../results/single_link/temp2.txt'], shell = True)

        # remove duplicate lines
        call(['uniq -u ../results/single_link/temp2.txt > ../results/single_link/regions_classified.txt'], shell = True)

        # remove temporary files 
        call(['rm ../results/single_link/temp*.txt'], shell=True)
開發者ID:gabriel951,項目名稱:pibic,代碼行數:52,代碼來源:single_link_simulation.py

示例6: study_chisquare

# 需要導入模塊: from catalog import Catalog [as 別名]
# 或者: from catalog.Catalog import get_east_japan_bounds [as 別名]
    def study_chisquare(self, folder, array_path, days, alpha, mag_threshold=None):
        """
        receives a folder to look for the quakes, the path where the earthquake array is located,
        the number of days, a significance level and optionally a magnitude threshold

        performs a chisquare test for the 4 regions of japan and all the japan
        by taking the observed frequencies in that number of days
        """
        # auxiliar classes needed
        catalog = Catalog()
        stat = Statistic()

        # calculate the number of seconds to be done on the interval
        time_interval = days * 24.0 * 360.0

        # generate catalog in a good format to work with 
        quakes = pickle.load(open(array_path, 'rb'))
        catalog.record_mainshocks(quakes, folder + 'quakes.txt', '../catalogs/new_jma.txt')
        
        # get the core catalog name, and obtain it 
        if mag_threshold == None:
            CATALOG_EXTENSION = 'quakes.txt'
        else:
            CATALOG_EXTENSION = 'quakes_' + str(mag_threshold) + '.txt'
            catalog.get_mag_threshold(folder + 'quakes.txt', folder + CATALOG_EXTENSION ,mag_threshold)

        # do chi square test for all japan, with aftershocks
        print("Doing chi-square test for all japan, including aftershocks on analysis:")
        stat.do_chi_square(folder + CATALOG_EXTENSION, 0.05, time_interval)
        # do chi square test for all japan, without aftershocks
        print("\nDoing chi-square test for all japan, excluding aftershocks on analysis")
        catalog.get_mainshocks(folder + 'japan_mainshocks.txt', folder + CATALOG_EXTENSION, 5)
        stat.do_chi_square(folder + 'japan_mainshocks.txt', 0.05, time_interval)
       
        # get bounds for kanto
        bounds = catalog.get_kanto_bounds()
        # construct a catalog for quakes that happened in kanto
        catalog.select_geographically(bounds, folder + CATALOG_EXTENSION, 
                                        folder + 'quakes_kanto.txt')
        # do chi_squared test for kanto, with aftershocks
        print("\nDoing chi-square test for kanto, including aftershocks on analysis:")
        stat.do_chi_square(folder + 'quakes_kanto.txt', 0.05, time_interval)
        # do chi_squared test for kanto, without aftershocks
        print("\nDoing chi-square test for kanto, excluding aftershocks on analysis")
        catalog.get_mainshocks(folder + 'mainshocks_kanto.txt', folder + 'quakes_kanto.txt', 5)
        stat.do_chi_square(folder + 'mainshocks_kanto.txt', 0.05, time_interval)


        # get bounds for kansai
        bounds = catalog.get_kansai_bounds()
        # construct a catalog for quakes that happened in kansai
        catalog.select_geographically(bounds, folder + CATALOG_EXTENSION, 
                                        folder + 'quakes_kansai.txt')
        # do chi_squared test for kansai, with aftershocks
        print("\nDoing chi-square test for kansai, including aftershocks on analysis:")
        stat.do_chi_square(folder + 'quakes_kansai.txt', 0.05, time_interval)
        # do chi_squared test for kansai, without aftershocks
        print("\nDoing chi-square test for kansai, excluding aftershocks on analysis")
        catalog.get_mainshocks(folder + 'mainshocks_kansai.txt', folder + 'quakes_kansai.txt', 5)
        stat.do_chi_square(folder + 'mainshocks_kansai.txt', 0.05, time_interval)

        # get bounds for tohoku
        bounds = catalog.get_tohoku_bounds()
        # construct a catalog for quakes that happened in tohoku
        catalog.select_geographically(bounds, folder + CATALOG_EXTENSION, 
                                        folder + 'quakes_tohoku.txt')
        # do chi_squared test for tohoku, with aftershocks
        print("\nDoing chi-square test for tohoku, including aftershocks on analysis:")
        stat.do_chi_square(folder + 'quakes_tohoku.txt', 0.05, time_interval)
        # do chi_squared test for tohoku, without aftershocks
        print("\nDoing chi-square test for tohoku, excluding aftershocks on analysis")
        catalog.get_mainshocks(folder + 'mainshocks_tohoku.txt', folder + 'quakes_tohoku.txt', 5)
        stat.do_chi_square(folder + 'mainshocks_tohoku.txt', 0.05, time_interval)

        # get bounds for east_japan
        bounds = catalog.get_east_japan_bounds()
        # construct a catalog for quakes that happened in east_japan
        catalog.select_geographically(bounds, folder + CATALOG_EXTENSION, 
                                        folder + 'quakes_east_japan.txt')
        # do chi_squared test for east_japan, with aftershocks
        print("\nDoing chi-square test for east_japan, including aftershocks on analysis:")
        stat.do_chi_square(folder + 'quakes_east_japan.txt', 0.05, time_interval)
        # do chi_squared test for east_japan, without aftershocks
        print("\nDoing chi-square test for east_japan, excluding aftershocks on analysis")
        catalog.get_mainshocks(folder + 'mainshocks_east_japan.txt', folder + 'quakes_east_japan.txt', 5)
        stat.do_chi_square(folder + 'mainshocks_east_japan.txt', 0.05, time_interval)
開發者ID:gabriel951,項目名稱:pibic,代碼行數:88,代碼來源:stats.py

示例7: show_divide_quakes

# 需要導入模塊: from catalog import Catalog [as 別名]
# 或者: from catalog.Catalog import get_east_japan_bounds [as 別名]
    def show_divide_quakes(self, array_path):
        """
        receives a path to an array of quakes
        counts how many quakes happened in each of the sets:
            set 1 - quakes that happened in kanto
            set 2 - quakes that happened in kansai but not in set 1
            set 3 - quakes that happened in tohoku but not in set 1 and 2
            set 4 - quakes that happened in east japan but not in set 1, 2 and 3
            set 5 - quakes that didn't happen in sets 1, 2, 3 and 4
        """
        # obtain earthquake array
        quakes = pickle.load(open(array_path, 'rb'))

        # get bounds for all regions
        catalog = Catalog()
        kanto_bounds = catalog.get_kanto_bounds()
        kansai_bounds = catalog.get_kansai_bounds()
        tohoku_bounds = catalog.get_tohoku_bounds()
        east_japan_bounds = catalog.get_east_japan_bounds()
        
        # set variables to zero 
        num_set1 = 0
        num_set2 = 0
        num_set3 = 0
        num_set4 = 0
        num_set5 = 0


        # iterate through the array
        for index in range(len(quakes)):

            # get current quake 
            cur_quake = quakes[index]

            # if the current quake happened in kanto 
            if cur_quake.is_on_region(kanto_bounds):

                # increment appropriate variable
                num_set1 += 1

                # go to the next quake
                continue

            # if the current quake happened in kansai 
            if cur_quake.is_on_region(kansai_bounds):

                # increment appropriate variable
                num_set2 += 1

                # go to the next quake
                continue

            # if the current quake happened in tohoku 
            if cur_quake.is_on_region(tohoku_bounds):

                # increment appropriate variable
                num_set3 += 1

                # go to the next quake
                continue

            # if the current quake happened in east_japan 
            if cur_quake.is_on_region(east_japan_bounds):

                # increment appropriate variable
                num_set4 += 1

                # go to the next quake
                continue
            
            # finally, increment set that does not contain every quake
            else:
                num_set5 += 1 

        # print results
        print("quakes that happened in kanto: ", num_set1)
        print("quakes that happened in kansai but not in kanto: ", num_set2)
        print("quakes that happened in tohoku, but not in kanto/kansai: ", num_set3)
        print("quakes that happened in east japan, but not in tohoku/kanto/kansai: ", num_set4)
        print("quakes that didn't happen in any of the previous for regions", num_set5)
開發者ID:gabriel951,項目名稱:pibic,代碼行數:82,代碼來源:stats.py

示例8: plot_heat_all

# 需要導入模塊: from catalog import Catalog [as 別名]
# 或者: from catalog.Catalog import get_east_japan_bounds [as 別名]
    def plot_heat_all(self, array_path, dep_lim = None, map_background = True):
        """
        receives the path to a serialized array object 
        optionally receives a depth limit and a map background boolean, to 
        indicate wheter we use the map as background or the coast as background
        in order to study the mainshocks plot heat map for all regions
        """
        # obtain array of shocks within the depth limit 
        all_quakes = pickle.load(open(array_path, 'rb'))
        useful_quakes = []
        for index in range(len(all_quakes)):
            current_quake = all_quakes[index]
            if dep_lim != None and current_quake.depth > dep_lim:
                continue
            useful_quakes.append(current_quake)

        # get instance of classes that we'll need methods
        draw = Draw() 
        cat = Catalog()

        # get dictionary that for every region name gives bound and zoom for all regions
        regions = {}
        regions["japan"] = [cat.get_catalog_bounds('../catalogs/new_jma.txt'), 5, 100]
        regions["kanto"] = [cat.get_kanto_bounds(), 9, 25]
        regions["kansai"] = [cat.get_kansai_bounds(), 9, 25]
        regions["tohoku"] = [cat.get_tohoku_bounds(), 9, 25]
        regions["east_japan"] = [cat.get_east_japan_bounds(), 9, 25]
        
        # index to add legibility to the code
        BOUNDS = 0
        ZOOM = 1
        BINS = 2

        # set time bound on which to plot and which years to plot 
        year_bound = [[0.0, 12*366*24.0*3600]] # this way all years are considered

        # iterate through the years 
        for time in year_bound:
            
            # iterate through the regions
            for region, info in regions.items():

                # if we are using a map as background
                if map_background: 

                    # plot image for the region
                    draw.plot_image_quakes(useful_quakes, time, info[BOUNDS], info[ZOOM])
                    call(["pdftoppm", "-rx", "300", "-ry", "300", "-png", "Rplots.pdf", region + "_back_heat"])
                    call(["mv",  region + "_back_heat-1.png", "../images/"])
                    call(["rm", "Rplots.pdf"])
                    input("Edit the image and then press Enter")

                    # plot heat map for the region in the given year
                    self.plot_heat(useful_quakes, time, info[BOUNDS], info[BINS], "../images/" + region + "_back_heat-1.png",\
                            only_main = False)
                    # save it in the correct format, and do cleaning
                    call(["mv", "temp.png", "../images/" + region + "_heat.png"])

                else:
                    # plot image for the current region 
                    draw.plot_quakes_coast(useful_quakes, time, info[BOUNDS], dep_lim = dep_lim)
                    call(["mv", "temp.png", "../images/" + region + "_back_heat_coast-1.png"])
                    input("Edit the image and then press Enter")

                    # plot heat map for the region in the given year
                    self.plot_heat(useful_quakes, time, info[BOUNDS], info[BINS], "../images/" + region + "_back_heat_coast-1.png",\
                            only_main = False)
                    # save it in the correct format, and do cleaning
                    call(["mv", "temp.png", "../images/" + region + "_heat_coast.png"])
開發者ID:gabriel951,項目名稱:pibic,代碼行數:71,代碼來源:stats.py

示例9: plot_clusters_all

# 需要導入模塊: from catalog import Catalog [as 別名]
# 或者: from catalog.Catalog import get_east_japan_bounds [as 別名]
    def plot_clusters_all(self, array_path, dep_lim = None, map_background = True):
        """
        receives a path to the array of quakes.

        optionally it receives a depth limit and a map_background boolean
        if map_background = True, then the cluster is plot with a background map
        if map_background = False, then the cluster is plot with the coast of japan 
        as background 
        
        in order to plot study the mainshocks and it's associated clusters,
        plot some clusters on the map 
        """
        # obtain array of shocks within the depth limit 
        all_quakes = pickle.load(open(array_path, 'rb'))
        useful_quakes = []
        for index in range(len(all_quakes)):
            current_quake = all_quakes[index]
            if dep_lim != None and current_quake.depth > dep_lim:
                continue
            useful_quakes.append(current_quake)

        # get instance of classes so we can access methods
        draw = Draw()
        cat = Catalog()

        # get dictionary that for every region name gives bound and zoom for all regions
        regions = {}
        regions["japan"] = [cat.get_catalog_bounds('../catalogs/new_jma.txt'), 5]
        regions["kanto"] = [cat.get_kanto_bounds(), 9]
        regions["kansai"] = [cat.get_kansai_bounds(), 9]
        regions["tohoku"] = [cat.get_tohoku_bounds(), 9]
        regions["east_japan"] = [cat.get_east_japan_bounds(), 9]
        
        # index to add legibility to the code
        BOUNDS = 0
        ZOOM = 1
        
        # set list of how many clusters to plot, and which years to plot 
        num_clusters = [10]
        year_bound = [[0.0, 12*366*24.0*3600]] # this way we consider all years

        # iterate through the list containing how many clusters we plot
        for num in num_clusters:

            # iterate through the years 
            for time in year_bound:
                
                # iterate through the regions
                for region, info in regions.items():
                    
                    # if we need to plot a map in the background
                    if map_background:

                        # plot image for the current region 
                        draw.plot_image_quakes(useful_quakes, time, info[BOUNDS], info[ZOOM], num_clusters = num, dep_lim = dep_lim)
                        call(["pdftoppm", "-rx", "300", "-ry", "300", "-png", "Rplots.pdf", region + "_back"])
                        call(["mv",  region + "_back-1.png", "../images/"])
                        call(["rm", "Rplots.pdf"])
                        input("Edit the image and then press Enter")

                        # plot cluster for current region in the given year, for the current number of clusters
                        self.plot_clusters(useful_quakes, num, time, info[BOUNDS],  "../images/" + region +"_back-1.png")
                        ## save it in the correct format, and do cleaning
                        call(["mv", "temp.png", "../images/" + region + "_clusters_map.png"])
                    
                    # if we dont want to plot a japan map in the background
                    else:

                        # plot image for the current region 
                        draw.plot_quakes_coast(useful_quakes, time, info[BOUNDS], num_clusters = num, dep_lim = dep_lim)
                        call(["mv", "temp.png", "../images/" + region + "_back_coast-1.png"])
                        input("Edit the image and then press Enter")

                        # plot cluster for current region in the given year, for the current number of clusters
                        self.plot_clusters(useful_quakes, num, time, info[BOUNDS],  "../images/" + region +"_back_coast-1.png")
                                
                        ## save it in the correct format, and do cleaning
                        call(["mv", "temp.png", "../images/" + region + "_clusters_coast.png"])
開發者ID:gabriel951,項目名稱:pibic,代碼行數:80,代碼來源:stats.py

示例10: draw_all_maps

# 需要導入模塊: from catalog import Catalog [as 別名]
# 或者: from catalog.Catalog import get_east_japan_bounds [as 別名]
    def draw_all_maps(self):
        """
        draw the maps for the japan catalog, kanto region
        kansai region, tohoku region and east japan region
        """
        # get a catalog
        cat = Catalog();

        # get japan bounds
        bounds = cat.get_catalog_bounds("../catalogs/new_jma.txt")

        # draw map for japan 
        self.draw_map(bounds, 5)
        
        # convert image to png, save it on images folder and removes the pdf 
        call(["pdftoppm", "-rx", "300", "-ry", "300", "-png", "Rplots.pdf", "japan"])
        call(["cp",  "japan-1.png", "../images/"])
        call(["rm", "japan-1.png"])
        call(["rm", "Rplots.pdf"])

        # get kanto bounds
        bounds = cat.get_kanto_bounds()

        # draw map for kanto 
        self.draw_map(bounds, 9)

        # convert image to png, save it on images folder and removes the pdf 
        call(["pdftoppm", "-rx", "300", "-ry", "300", "-png", "Rplots.pdf", "kanto"])
        call(["cp",  "kanto-1.png", "../images/"])
        call(["rm", "kanto-1.png"])
        call(["rm", "Rplots.pdf"])

        # get kansai bounds
        bounds = cat.get_kansai_bounds()

        # draw map for kansai 
        self.draw_map(bounds, 9)

        # convert image to png, save it on images folder and removes the pdf 
        call(["pdftoppm", "-rx", "300", "-ry", "300", "-png", "Rplots.pdf", "kansai"])
        call(["cp",  "kansai-1.png", "../images/"])
        call(["rm", "kansai-1.png"])
        call(["rm", "Rplots.pdf"])

        # get tohoku bounds
        bounds = cat.get_tohoku_bounds()

        # draw map for tohoku 
        self.draw_map(bounds, 8)

        # convert image to png, save it on images folder and removes the pdf 
        call(["pdftoppm", "-rx", "300", "-ry", "300", "-png", "Rplots.pdf", "tohoku"])
        call(["cp",  "tohoku-1.png", "../images/"])
        call(["rm", "tohoku-1.png"])
        call(["rm", "Rplots.pdf"])

        # get east_japan bounds
        bounds = cat.get_east_japan_bounds()

        # draw map for east_japan 
        self.draw_map(bounds, 8)

        # convert image to png, save it on images folder and removes the pdf 
        call(["pdftoppm", "-rx", "300", "-ry", "300", "-png", "Rplots.pdf", "east_japan"])
        call(["cp",  "east_japan-1.png", "../images/"])
        call(["rm", "east_japan-1.png"])
        call(["rm", "Rplots.pdf"])
開發者ID:gabriel951,項目名稱:pibic,代碼行數:69,代碼來源:draw.py


注:本文中的catalog.Catalog.get_east_japan_bounds方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。